Reinforcement of motor evoked potentials in patients with spinal cord injury. 1991

K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
Department of Physical Medicine and Rehabilitation, Parkwood Hospital, London, Ontario, Canada.

Transcranial magnetic stimulation of the motor cortex has been used to investigate the putative existence of spared motor pathways in spinal cord injured patients with clinically complete paralysis. Particular consideration was given to methods of neurological reinforcement likely to minimize the risk of false negative interpretation of absent motor evoked potentials (MEPs). The principal methods of reinforcement included target and remote muscle contractions and conditioning of MEPs with a brief (20 msec) train of cutaneous stimulation (500 Hz: duration 0.1 msec) delivered 20-150 msec prior to cortical stimulation. Twelve control subjects and 26 patients with severe traumatic spinal cord injury underwent cortical stimulation delivered from a Cadwell MES-10 (70-100% intensity) through a 9-cm focal-point coil. Electromyographic responses were recorded from surface electrodes in bipolar configuration and amplified (3 dB down at 10 Hz-1 kHz) prior to storage. MEPs were recorded, following reinforcement, in muscles with clinically complete paralysis in 4/26 patients. In each case, MEPs were of low amplitude (less than 0.5 mV), polyphasic, and with variable and prolonged latencies. MEPs were evoked in severely paretic (clinically incomplete paralysis) muscles in 6/8 patients only when neurological reinforcement was employed. Conditioning of MEPs in tibialis anterior with preceding cutaneous stimulation to the plantar surface (subthreshold for evoking a flexion reflex) yielded a well-defined modulation of MEP amplitude in control subjects. An early (Conditioning-Test (C-T) intervals 20-45 msec) period of inhibition of MEPs (mean = 60% of control) was followed by a period (C-T intervals 50-90 msec) of facilitation (mean = 345%) and a subsequent (C-T intervals 90-150 msec) period of inhibition (mean = 0%). In spinal cord injured patients the same conditioning paradigm failed to reveal MEPs, but did result in the appearance of suprathreshold flexion reflexes in 2 patients at 20-55 msec C-T intervals. This summation of convergent but subliminal cortical and cutaneous inputs to the target motoneuron pool provided additional evidence of preserved cortical influence on segmental structures that was not detectable by other means. These results extend previous reports of electrophysiological evidence of spared motor pathways in spinal cord injured patients with complete paralysis, and affirm the need for neurological reinforcement as a routine procedure in cortical stimulation studies of spinal cord injuries.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
January 1989, Journal of neurotrauma,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
August 2001, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
May 1988, Zhonghua yi xue za zhi,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
March 1997, Journal of neurotrauma,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
January 2006, Journal of neurology,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
January 1992, Journal of the neurological sciences,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
October 1990, Journal of clinical monitoring,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
August 2010, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
January 1991, Electroencephalography and clinical neurophysiology. Supplement,
K C Hayes, and R D Allatt, and D L Wolfe, and T Kasai, and J Hsieh
July 2018, Veterinary journal (London, England : 1997),
Copied contents to your clipboard!