Product analysis of bisulfite reductase activity isolated from Desulfovibrio vulgaris. 1976

H L Drake, and J M Akagi

Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003901 Desulfovibrio A genus of gram-negative, anaerobic, rod-shaped bacteria capable of reducing sulfur compounds to hydrogen sulfide. Organisms are isolated from anaerobic mud of fresh and salt water, animal intestines, manure, and feces.
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur
D013447 Sulfites Inorganic salts of sulfurous acid. Sulfite,Sulfites, Inorganic,Inorganic Sulfites
D013456 Sulfur Acids Inorganic or organic acids that contain sulfur as an integral part of the molecule. Sulfurous Acids,Acids, Sulfur,Acids, Sulfurous
D013885 Thiosulfates Inorganic salts of thiosulfuric acid possessing the general formula R2S2O3. Thiosulfate

Related Publications

H L Drake, and J M Akagi
January 2009, Mikrobiologiia,
H L Drake, and J M Akagi
May 1971, Journal of bacteriology,
H L Drake, and J M Akagi
August 1985, Journal of bacteriology,
H L Drake, and J M Akagi
September 1970, Journal of bacteriology,
H L Drake, and J M Akagi
March 1983, European journal of biochemistry,
H L Drake, and J M Akagi
November 2008, Acta crystallographica. Section F, Structural biology and crystallization communications,
H L Drake, and J M Akagi
April 1975, The Journal of biological chemistry,
Copied contents to your clipboard!