Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. 1976

A Berg, and J A Gustafsson, and M Ingelman-Sundberg

Cell-free extracts from sonically disrupted Bacillus megaterium ATCC 13368 hydroxylated a variety of 3-oxo-delta4-steroids in position 15beta in the presence of NADPH and O2. Ring A-reduced, aromatic and 3beta-hydroxy-delta5-steroids did not serve as substrates for the 15beta-hydroxylase system. Using ion exchange chromatography on DEAE-cellulose and gel filtration on Ultrogel ACA-54 it was possible to resolve the hydroxylase system into three proteins: a strictly NADPH-dependent FMN-containing (megaredoxin reductase), an iron-sulfur protein (megaredoxin), and cytochrome P-450 (P-450meg). The activity of the 15beta-hydroxylase system was fully reconstituted upon combination of these three proteins and addition of NADPH. Megaredoxin had an apparent sulfur to iron ration of 0.98 and showed g-signals at 1.90, 1.93, and 2.06 when analyzed by electron paramagnetic reso0 times and the preparation contained 1 to 2 nmol of cytochrome P-450 per mg of protein. This preparation of cytochrome P-450meg sedimented as a homogeneous zone on sucrose gradients with a sedimentation coefficient of 3.3 S and contained 0.94 nmol of heme per nmol of cytochrome P-450. The oxidized form of cytochrome P-450meg showed absolute absorption maxima at 416, 528, and 565 nm whereas the reduced form showed maxima at 411 and 542 nm. The following scheme is suggested for the electron transport in the 15beta-hydroxylase system in B. megaterium: NADPH leads to megaredoxin reductase leads to megaredoxin leads to cytochrome P-450meg.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D001410 Bacillus megaterium A species of bacteria whose spores vary from round to elongate. It is a common soil saprophyte. Bacillus megatherium
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A Berg, and J A Gustafsson, and M Ingelman-Sundberg
June 1977, Biochimica et biophysica acta,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
December 1980, Biochemical and biophysical research communications,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
September 1979, Molecular and cellular endocrinology,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
November 1983, Biochemical and biophysical research communications,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
June 1981, The Journal of biological chemistry,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
March 1982, The Journal of biological chemistry,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
June 1991, The Journal of biological chemistry,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
January 2015, Archives of pharmacal research,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
December 1978, Journal of steroid biochemistry,
A Berg, and J A Gustafsson, and M Ingelman-Sundberg
June 1986, The Journal of biological chemistry,
Copied contents to your clipboard!