Kinetic analysis of chloride conductance in frog skeletal muscle at pH 5. 1991

P Vaughan, and J M Kootsey, and M D Feezor
Department of Physiology, University of British Columbia, Vancouver, Canada.

At pH 5 the steady-state chloride chord conductance in frog skeletal muscle rises to an asymptotic maximum at very negative voltages and approaches an asymptotic minimum at positive voltages. When a two-pulse test paradigm is used, the conductance computed from steady-state currents during the first (conditioning) voltage step are not duplicated by the conductance at the onset of a second (test) step. If the test step is to a more negative voltage than the conditioning step the steady-state conductance is overestimated; if it is to a less negative voltage the conductance is underestimated. In some fibres the initial currents accompanying steps from the resting potential are inwardly rectified. From this it was inferred that chloride channel conductance is voltage dependent: in those fibres in which no such initial inward rectification was observed it was inferred that at rest the voltage-dependent chloride channels are all closed. Time-dependent ("gated") changes of conductance could be reasonably described by a first-order process, but the relaxations were not simple exponentials. Simulation of the experimental set-up predicted the type of deviation from exponentiality seen experimentally, although the observed deviations were often more pronounced than those predicted.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

P Vaughan, and J M Kootsey, and M D Feezor
April 1967, The Journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
April 1960, The Journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
December 1972, The Journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
January 1969, The Journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
September 1987, Pflugers Archiv : European journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
September 1977, The Journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
December 1989, Pflugers Archiv : European journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
May 1990, Pflugers Archiv : European journal of physiology,
P Vaughan, and J M Kootsey, and M D Feezor
August 1980, The Journal of experimental biology,
P Vaughan, and J M Kootsey, and M D Feezor
August 1962, The Journal of physiology,
Copied contents to your clipboard!