A Bayesian predictive two-stage design for phase II clinical trials. 2008

Valeria Sambucini
Department of Statistics, Probability and Applied Statistics, University of Rome La Sapienza, Rome, Italy. valeria.sambucini@uniroma1.it

In this paper, we propose a Bayesian two-stage design for phase II clinical trials, which represents a predictive version of the single threshold design (STD) recently introduced by Tan and Machin. The STD two-stage sample sizes are determined specifying a minimum threshold for the posterior probability that the true response rate exceeds a pre-specified target value and assuming that the observed response rate is slightly higher than the target. Unlike the STD, we do not refer to a fixed experimental outcome, but take into account the uncertainty about future data. In both stages, the design aims to control the probability of getting a large posterior probability that the true response rate exceeds the target value. Such a probability is expressed in terms of prior predictive distributions of the data. The performance of the design is based on the distinction between analysis and design priors, recently introduced in the literature. The properties of the method are studied when all the design parameters vary.

UI MeSH Term Description Entries
D009303 Nasopharyngeal Neoplasms Tumors or cancer of the NASOPHARYNX. Cancer of Nasopharynx,Nasopharyngeal Cancer,Cancer of the Nasopharynx,Nasopharynx Cancer,Nasopharynx Neoplasms,Neoplasms, Nasopharyngeal,Cancer, Nasopharyngeal,Cancer, Nasopharynx,Cancers, Nasopharyngeal,Cancers, Nasopharynx,Nasopharyngeal Cancers,Nasopharyngeal Neoplasm,Nasopharynx Cancers,Nasopharynx Neoplasm,Neoplasm, Nasopharyngeal,Neoplasm, Nasopharynx,Neoplasms, Nasopharynx
D011237 Predictive Value of Tests In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test. Negative Predictive Value,Positive Predictive Value,Predictive Value Of Test,Predictive Values Of Tests,Negative Predictive Values,Positive Predictive Values,Predictive Value, Negative,Predictive Value, Positive
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D012107 Research Design A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly. Experimental Design,Data Adjustment,Data Reporting,Design, Experimental,Designs, Experimental,Error Sources,Experimental Designs,Matched Groups,Methodology, Research,Problem Formulation,Research Methodology,Research Proposal,Research Strategy,Research Technics,Research Techniques,Scoring Methods,Adjustment, Data,Adjustments, Data,Data Adjustments,Design, Research,Designs, Research,Error Source,Formulation, Problem,Formulations, Problem,Group, Matched,Groups, Matched,Matched Group,Method, Scoring,Methods, Scoring,Problem Formulations,Proposal, Research,Proposals, Research,Reporting, Data,Research Designs,Research Proposals,Research Strategies,Research Technic,Research Technique,Scoring Method,Source, Error,Sources, Error,Strategies, Research,Strategy, Research,Technic, Research,Technics, Research,Technique, Research,Techniques, Research
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D017322 Clinical Trials, Phase II as Topic Works about studies that are usually controlled to assess the effectiveness and dosage (if appropriate) of diagnostic, therapeutic, or prophylactic drugs, devices, or techniques. These studies are performed on several hundred volunteers, including a limited number of patients with the target disease or disorder, and last about two years. This concept includes phase II studies conducted in both the U.S. and in other countries. Drug Evaluation, FDA Phase 2 as Topic,Drug Evaluation, FDA Phase II as Topic,Evaluation Studies, FDA Phase 2 as Topic,Evaluation Studies, FDA Phase II as Topic
D018401 Sample Size The number of units (persons, animals, patients, specified circumstances, etc.) in a population to be studied. The sample size should be big enough to have a high likelihood of detecting a true difference between two groups. (From Wassertheil-Smoller, Biostatistics and Epidemiology, 1990, p95) Sample Sizes,Size, Sample,Sizes, Sample
D035501 Uncertainty The condition in which reasonable knowledge regarding risks, benefits, or the future is not available.

Related Publications

Valeria Sambucini
October 2006, Statistics in medicine,
Valeria Sambucini
July 2002, Statistics in medicine,
Valeria Sambucini
May 2022, Statistics in medicine,
Valeria Sambucini
February 2003, Journal of biopharmaceutical statistics,
Valeria Sambucini
November 2020, Journal of biopharmaceutical statistics,
Valeria Sambucini
October 1998, Controlled clinical trials,
Valeria Sambucini
August 2012, Statistics in medicine,
Valeria Sambucini
October 2022, Biometrical journal. Biometrische Zeitschrift,
Copied contents to your clipboard!