Postprandial plasma triglyceride and cholesterol responses to a low-fat meal. 1976

J M Olefsky, and P Crapo, and G M Reaven

Postprandial plasma cholesterol and triglyceride (TG) levels were measured after the consumption of a relatively low-fat (35% of calories) diet in 41 subjects. Plasma cholesterol levels did not change appreciably during the postprandial state. In 34 subjects a biphasic plasma TG response curve was noted, with an initial peak occurring 1 to 3 hr after feeding and a secondary TG peak 4 to 7 hr after the meal. The primary peak was greater than 90%, accounted for by chylomicrons, whereas the secondary peak represented very low-density lipoproteins (greater than 82%). Furthermore, the heights of the primary and secondary peaks were closely correlated to the fasting TG level (r = 0.61 and 0.72, respectively) indicating that the fasting TG concentration is an important determinant of the postprandial TG response. Because low-fat (high-carbohydrate) diets are known to raise fasting TG levels in patients who do not have fasting hyperchylomicronemia, and because relatively few patients have chylomicrons in the fasting state, these data suggest that such diets may lead to day long increases in plasma TG levels in the majority of subjects.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002914 Chylomicrons A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS. Chylomicron
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary

Related Publications

J M Olefsky, and P Crapo, and G M Reaven
November 2021, The Journal of nutritional biochemistry,
J M Olefsky, and P Crapo, and G M Reaven
September 1990, Annals of clinical biochemistry,
J M Olefsky, and P Crapo, and G M Reaven
December 1971, The Proceedings of the Nutrition Society,
J M Olefsky, and P Crapo, and G M Reaven
April 1995, The American journal of clinical nutrition,
J M Olefsky, and P Crapo, and G M Reaven
May 1988, The American journal of clinical nutrition,
J M Olefsky, and P Crapo, and G M Reaven
November 2001, Metabolism: clinical and experimental,
J M Olefsky, and P Crapo, and G M Reaven
September 2021, Lipids in health and disease,
J M Olefsky, and P Crapo, and G M Reaven
October 1992, Clinical biochemistry,
J M Olefsky, and P Crapo, and G M Reaven
December 2016, Journal of lipid research,
J M Olefsky, and P Crapo, and G M Reaven
May 1994, Biochemical Society transactions,
Copied contents to your clipboard!