Nucleolar colocalization of TAF1 and testis-specific TAFs during Drosophila spermatogenesis. 2007

Chad E Metcalf, and David A Wassarman
University of Wisconsin School of Medicine and Public Health, Department of Biomolecular Chemistry, Madison, Wisconsin 53706, USA.

In Drosophila, testis-specific TBP-associated factors (tTAFs) predominantly localize to spermatocyte nucleoli and regulate the transcription of genes necessary for spermatocyte entry into meiosis. tTAFs are paralogs of generally expressed TAF subunits of transcription factor IID (TFIID). Our recent observation that the generally expressed TAF1 isoform TAF1-2 is greatly enriched in testes prompted us to explore the functional relationship between general TAFs and tTAFs during spermatogenesis. Analysis by immunofluorescence microscopy revealed that among the general TFIID subunits examined (TATA-box binding protein [TBP], TAF1, TAF4, TAF5, and TAF9), only TAF1 colocalized with the tTAF Mia in spermatocyte nucleoli. Nucleolar localization of TAF1, but not Mia, was disrupted in tTAF mutant flies, and TAF1 dissociated from DNA prior to Mia as spermatocytes entered meiosis. Taken together, our results suggest stepwise assembly of a testis-specific TFIID complex (tTFIID) whereby a TAF1 isoform, presumably TAF1-2, is recruited to a core subassembly of tTAFs in spermatocyte nucleoli.

UI MeSH Term Description Entries
D008297 Male Males
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013090 Spermatocytes Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. Spermiocytes,Spermatocyte,Spermiocyte
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D017344 Genes, Insect The functional hereditary units of INSECTS. Insect Genes,Gene, Insect,Insect Gene
D051548 Histone Acetyltransferases Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones. Histone Acetylase,Histone Acetyltransferase,Acetylase, Histone,Acetyltransferase, Histone,Acetyltransferases, Histone
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

Chad E Metcalf, and David A Wassarman
May 2009, Molecular biology and evolution,
Chad E Metcalf, and David A Wassarman
January 2006, Cellular & molecular biology letters,
Chad E Metcalf, and David A Wassarman
January 2007, Society of Reproduction and Fertility supplement,
Chad E Metcalf, and David A Wassarman
March 1991, Chromosoma,
Chad E Metcalf, and David A Wassarman
July 2012, Spermatogenesis,
Chad E Metcalf, and David A Wassarman
December 2010, Insect molecular biology,
Chad E Metcalf, and David A Wassarman
February 1995, European journal of biochemistry,
Chad E Metcalf, and David A Wassarman
November 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!