Insulin influences astroglial morphology and glial fibrillary acidic protein (GFAP) expression in organotypic cultures. 1991

C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032.

Variations in the levels and timing of exposure to insulin-related peptides influence the phenotypic appearance of astroglia present in organotypic cultures of the E17 mouse cerebellum as well as the expression of glial fibrillary acidic protein (GFAP) mRNA and its encoded protein. The morphology of GFAP-immunoreactive cells was influenced by the levels of insulin added in an age-specific manner. Fetal radial glia were selectively and significantly (P less than 0.001) increased by high (10 micrograms/ml) insulin levels, comprising the majority of the GFAP-positive cells seen. In contrast, there was an almost complete reversal of this pattern elicited by low (10 pg/ml) insulin levels, where GFAP-positive cells appeared undifferentiated and epithelioid (P less than 0.001). In newborn cultures, on the other hand, the morphological responses to both high and low levels of insulin were considerably attenuated and involved radial glia primarily, whose numbers were significantly increased by the high insulin levels. Exposure to high levels of insulin was accompanied by an increase in GFAP mRNA expression, as determined by non-isotopic (biotin) in situ hybridization histochemistry, and intense GFAP immunoreactivity, while low insulin levels elicited minimal expression of both message and protein product. In view of the critical interdependence of developing neurons and radial glia with respect to neuronal migration and the differentiation of neurons and astroglia, the responses observed suggest developmentally regulated mechanisms by which insulin-related peptides themselves may influence directly and indirectly both neuronal and astroglial differentiation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
September 2023, BMJ case reports,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
March 2007, Experimental eye research,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
June 1986, Journal of neuroimmunology,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
June 1985, Journal of neuroimmunology,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
November 1977, FEBS letters,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
August 2007, The Veterinary record,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
October 1980, Brain research,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
May 2001, Journal of neuropathology and experimental neurology,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
November 1986, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
C D Toran-Allerand, and W Bentham, and R C Miranda, and J P Anderson
January 1990, Glia,
Copied contents to your clipboard!