Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons. 2007

Dekel Segev, and Alon Korngreen
The Mina & Everard Goodman Faculty of Life Sciences and the Susan & Leslie Gonda Multidiciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.

The substantia nigra (SN) is part of the basal ganglia which is a section in the movement circuit in the brain. Dopaminergic neurons (DA) constitute the bulk of substantia nigra neurons and are related to diseases such as Parkinson's disease. Aiming at describing the mechanism of action potential firing in these cells, the current research examined the biophysical characteristics of voltage-gated K+ conductances in the dopaminergic neurons of the SN. The outside-out configuration of the patch-clamp technique was used to measure from dopaminergic neurons in acute brain slices. Two types of K+ voltage-gated conductances, a fast-inactivating A-type-like K+ conductance (K(fast)) and a slow-inactivating delayed rectifier-like K+ conductance (K(slow)), were isolated in these neurons using kinetic separation protocols. The data suggested that a fast-inactivating conductance was due to 69% of the total voltage-gated K+ conductances, while the remainder of the voltage-gated K+ conductance was due to the activation of a slow-inactivating K+ conductance. The two voltage-gated K+ conductances were analyzed assuming a Hodgkin-Huxley model with two activation and one inactivation gate. The kinetic models obtained from this analysis were used in a numerical simulation of the action potential. This simulation suggested that K(fast) may be involved in the modulation of the height and width of action potentials initiated at different resting membrane potentials while K(slow) may participate in action potential repolarization. This mechanism may indicate that SN dopaminergic neurons may perform analog coding by modulation of action potential shape.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

Dekel Segev, and Alon Korngreen
June 1985, Brain research,
Dekel Segev, and Alon Korngreen
February 2001, The European journal of neuroscience,
Dekel Segev, and Alon Korngreen
February 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Dekel Segev, and Alon Korngreen
September 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Dekel Segev, and Alon Korngreen
January 2007, Progress in brain research,
Dekel Segev, and Alon Korngreen
August 2016, Neuroscience,
Dekel Segev, and Alon Korngreen
August 2007, The Journal of pharmacology and experimental therapeutics,
Dekel Segev, and Alon Korngreen
January 2009, Journal of neural transmission. Supplementum,
Dekel Segev, and Alon Korngreen
January 1973, Journal of neurobiology,
Copied contents to your clipboard!