Excitation and inhibition of trigeminal motoneurons by palatal stimulation. 1991

M Takata, and S Tomioka, and N Nakajo
Department of Physiology, Tokushima University, Japan.

Excitation and inhibition of jaw-closing motoneurons (Masseteric and Temporal Motoneurons, Mass. and Temp. Mns) during transient jaw closing, the so-called jaw-closing reflex, and prolonged jaw opening elicited by palatal stimulation were studied. By pressing the anterior palatal surfaces sustained jaw opening was elicited, suggesting that sustained jaw opening results from inhibition of tonic background activity of jaw-closing motoneurons by inhibitory postsynaptic potentials (IPSPs) elicited by mechanical stimulation of the anterior palatal mucosa. Recordings showed that the onset of IPSPs was 80 ms earlier than the onset of jaw opening. Application of diffuse pressure stimulation to the posterior palatal surfaces elicited bursts of spikes triggered on excitatory postsynaptic potentials (EPSPs), suggesting that mechanosensory receptors from the posterior palatal mucosa send excitatory synaptic inputs to jaw-closing motoneurons. Furthermore, it is suggested that mechanosensory inputs from the posterior palatal mucosa may excite neurons in the central pattern generator and provide the motor patterns responsible for jaw closure during the jaw-closing reflex. We have demonstrated that excitation of Mass. Mns innervating the deep masseter muscle mainly contributed to maintaining the occlusal phase of jaw closure during the jaw-closing reflex. However, the onset of EPSPs was 100 to 160 ms (n = 27) earlier than the onset of jaw closure. In studies on spontaneously occurring jaw closure it was demonstrated that there was a proportional increase in the number of spikes of the Temp. Mn and the mechanical response (jaw closure).

UI MeSH Term Description Entries
D007568 Jaw Bony structure of the mouth that holds the teeth. It consists of the MANDIBLE and the MAXILLA. Jaws
D008297 Male Males
D008406 Masseter Muscle A masticatory muscle whose action is closing the jaws. Masseter Muscles,Muscle, Masseter,Muscles, Masseter
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009061 Mouth Mucosa Lining of the ORAL CAVITY, including mucosa on the GUMS; the PALATE; the LIP; the CHEEK; floor of the mouth; and other structures. The mucosa is generally a nonkeratinized stratified squamous EPITHELIUM covering muscle, bone, or glands but can show varying degree of keratinization at specific locations. Buccal Mucosa,Oral Mucosa,Mucosa, Mouth,Mucosa, Oral
D010159 Palate The structure that forms the roof of the mouth. It consists of the anterior hard palate (PALATE, HARD) and the posterior soft palate (PALATE, SOFT). Incisive Papilla,Incisive Papillas,Palates,Papilla, Incisive,Papillas, Incisive
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

M Takata, and S Tomioka, and N Nakajo
December 1980, The Journal of Osaka University Dental School,
M Takata, and S Tomioka, and N Nakajo
January 1956, The American journal of physiology,
M Takata, and S Tomioka, and N Nakajo
May 1983, Journal of neuroscience methods,
M Takata, and S Tomioka, and N Nakajo
August 1978, Experimental brain research,
M Takata, and S Tomioka, and N Nakajo
July 1971, Acta physiologica Scandinavica,
M Takata, and S Tomioka, and N Nakajo
February 1978, Canadian journal of physiology and pharmacology,
M Takata, and S Tomioka, and N Nakajo
November 1993, Journal of dental research,
Copied contents to your clipboard!