Characterization of the plasma lipoproteins and apoproteins of the Erythrocebus patas monkey. 1976

R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer

Patas monkey lipoproteins were fractionated into four distinct classes by a combination of ultracentrifugation and Geon-Pevikon block electrophoresis and characterized with respect to their chemical and physical properties. Very low density lipoproteins (VLDL) were isolated at d is less than 1.006, were triglyceride rich, and were in the size range 300-850 A. They were similar in apoprotein content to the VLDL of man, dog, and swine. The Patas monkey low density lipoprotein referred to as LDL-I had beta mobility and a size which ranged from 190 to 240 A in diameter. Their chemical composition and apoprotein content were similar to those of human LDL. A second low density lipoprotein referred to as LDL-II occurred at a density of 1.05-1.085, ranged in size from 190 to 300 A, and contained the B, arginine-rich, and A-I apoproteins. Differences between LDL-I and LDL-II included a higher sialic acid content for LDL-II and lipid to protein ratios of 3.7 and 3.0 for LDL-I and LDL-II, respectively. In addition, the LDL-II, but not LDL-I, reacted immunochemically with antisera prepared to human Lp(a). The physical, chemical, and immunochemical properties indicated that monkey LDL-II were equivalent to the human Lp(a). Patas monkey HDL, equivalent to human HDL, were protein and phospholipid rich and ranged in size from 70 to 100 A in diameter. The two major HDL apoproteins, A-I and A-II, were isolated from apo-HDL by column chromatography. The amino-terminal sequence of Patas A-I showed striking homology to that reported for human, dog, and swing A-I. The amino acid composition of monkey A-II was very similar to that of human A-II; however, unlike human A-II, the monkey apoprotein was shown to exist as a monomer similar to that reported for Rhesus monkey A-II. The similarities between the plasma lipoproteins of the monkey and of man suggest that the Patas monkey would serve as a suitable model for metabolic studies.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001797 Blood Protein Electrophoresis Electrophoresis applied to BLOOD PROTEINS. Hemoglobin Electrophoresis,Electrophoresis, Blood Protein,Electrophoresis, Hemoglobin,Protein Electrophoresis, Blood
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D004590 Electrophoresis, Paper Electrophoresis in which paper is used as the diffusion medium. This technique is confined almost entirely to separations of small molecules such as amino acids, peptides, and nucleotides, and relatively high voltages are nearly always used. Paper Electrophoresis
D004901 Erythrocebus patas A species of the genus ERYTHROCEBUS, subfamily CERCOPITHECINAE, family CERCOPITHECIDAE. It inhabits the flat open arid country of Africa. It is also known as the patas monkey or the red monkey. Monkey, Patas,Monkey, Red,Patas Monkey,Red Monkey,Monkeys, Patas,Monkeys, Red,Patas Monkeys,Red Monkeys

Related Publications

R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
January 1971, Folia primatologica; international journal of primatology,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
October 1977, Laboratory animal science,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
October 1970, Cardiovascular research,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
March 1985, Endocrinology,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
February 1977, The Journal of parasitology,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
August 2023, Genes,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
February 1979, Laboratory animal science,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
January 2017, Primate biology,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
October 1971, Laboratory animal science,
R W Mahley, and K H Weisgraber, and T Innerarity, and H B Brewer
December 1982, Tijdschrift voor diergeneeskunde,
Copied contents to your clipboard!