The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study. 1991

G K Zupanc
Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0202.

Weakly electric knifefish (Eigenmannia sp.) produce continuous electric organ discharges at very constant frequencies. Modulations of the discharges occur during social interactions and are under control of the diencephalic prepacemaker nucleus. Abrupt frequency modulations, or 'chirps', which are observed predominantly during the breeding season, can be elicited by stimulation of neurons in a ventro-lateral portion of the prepacemaker nucleus, the so-called PPn-C. The PPn-C consists of approximately 100 loosely scattered large multipolar neurons which send dendrites into three territories, called 'dorso-medial', 'dorso-lateral', and 'ventral'. In the present ultrastructural investigation, the synaptic organization of these neurons, identified by retrograde labelling with horseradish peroxidase, was studied quantitatively. Somata and dendrites of the PPn-C receive input from two classes of chemical synapses. Class-1 boutons contain predominantly agranular, round vesicles and are believed to be excitatory. Class-2 boutons display predominantly flattened or pleiomorphic vesicles and are probably inhibitory. The action of the agranular vesicles in the synaptic boutons of these two classes may be modulated by the content of large dense-core vesicles. These comprise approximately 1% of the total vesicle population and are found predominantly in regions distant from the active zone of the synaptic bouton. The density of chemical synapses exhibits marked topographic differences. Class-1 boutons occur typically at densities of 3-12 synapses per 100 microns of profile length on dendrites and cell bodies. No significant differences in density of class-1 boutons could be found between distal dendrites of the three territories, proximal dendrites and cell bodies. The density of class-2 synapses, on the other hand, increases significantly from usually less than 1 synapse per 100 microns of profile length on distal dendrites to 2-3 synapses per 100 microns of profile length on proximal dendrites and cell bodies. Such a topographic organization could enable the proximal elements to 'veto' the depolarizing response of distal dendrites to excitatory inputs. The growth of dendrites in the dorso-medial territory during the breeding season, as shown in a previous study, and the concurrent doubling of excitatory input received by class-1 synapses, could overcome the inhibition caused on somata and proximal dendrites by class-2 synapses and thus account for the dramatic increase in the fish's propensity to chirp in the context of sexual maturity.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

G K Zupanc
January 1983, Advances in anatomy, embryology, and cell biology,
G K Zupanc
January 1988, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
Copied contents to your clipboard!