Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica. 2007

Emel Biçakçi Ordu, and Nevin Gül Karagüler
Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.

The Candida methylica (cm) recombinant wild type formate dehydrogenase (FDH) gene has been cloned into the pQE-2 TAGZyme expression vector and the 6xHis-tagged FDH gene has been overexpressed in JM105 cells to purify the FDH protein more efficiently, by the use of exopeptidases, TAGZyme Purification System, which has allowed the complete removal of the small N-terminal His-tag. After the purification procedure, 1.2 mg/mL cmFDH protein of >95% purity was obtained. The kinetic parameters of cmFDH have been determined by observing the oxidation of the nicotinamide coenzyme at 340 nm. The results have also been compared to the yield of standard vs. affinity purification of FDH.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal

Related Publications

Emel Biçakçi Ordu, and Nevin Gül Karagüler
April 1982, Biokhimiia (Moscow, Russia),
Emel Biçakçi Ordu, and Nevin Gül Karagüler
June 1981, Biokhimiia (Moscow, Russia),
Emel Biçakçi Ordu, and Nevin Gül Karagüler
November 1985, European journal of biochemistry,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
October 2011, Acta naturae,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
August 1994, The Biochemical journal,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
September 1979, European journal of biochemistry,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
September 2007, Biotechnology letters,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
June 1992, European journal of biochemistry,
Emel Biçakçi Ordu, and Nevin Gül Karagüler
January 2000, Bioseparation,
Copied contents to your clipboard!