Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos. 2007

Li Yuan, and Ying Cao, and Walter Knöchel
Institute of Biochemistry, University of Ulm, Ulm, Germany.

Maintenance of endoplasmic reticulum (ER) homeostasis is essential for correct protein targeting and secretion. ER stress caused by accumulation of unfolded or misfolded proteins leads to disruption of cellular functions. We have investigated the effect of ER stress on Xenopus embryogenesis. ER stress induced by tunicamycin (TM) treatment of embryos resulted in defects affecting germ layer formation. We observed up-regulation of ER stress response genes, enhanced cytoplasmic splicing of xXBP1 RNA, and increased rate of apoptosis. In animal cap assays, TM treatment inhibited mesoderm formation induced by overexpression of activin/nodal RNA but did not affect mesoderm formation induced by functional activin protein, suggesting that dysfunction of ER caused a failure in activin/nodal processing and/or secretion. The observation that activin protein renders mesoderm formation under ER stress strengthens the role of activin/nodal for mesoderm induction. The results underline the functional significance of ER homeostasis in germ layer formation during Xenopus embryogenesis.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005855 Germ Layers The three primary germinal layers (ECTODERM; ENDODERM; and MESODERM) developed during GASTRULATION that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast. Epiblast,Hypoblast,Epiblasts,Germ Layer,Hypoblasts,Layer, Germ,Layers, Germ
D000071701 Regulatory Factor X Transcription Factors A family of eukaryotic transcription factors that recognize and bind to a highly-conserved cis-regulatory sequence (X-box) within the promoter region of MHC CLASS II GENES. They contain a conserved winged-helix DNA binding domain and function as homo or heterodimers. RFX Transcription Factors,Factors, RFX Transcription,Transcription Factors, RFX
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Li Yuan, and Ying Cao, and Walter Knöchel
February 2018, The Journal of reproduction and development,
Li Yuan, and Ying Cao, and Walter Knöchel
March 2009, FEBS letters,
Li Yuan, and Ying Cao, and Walter Knöchel
January 1985, Folia morphologica,
Li Yuan, and Ying Cao, and Walter Knöchel
October 2021, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
Li Yuan, and Ying Cao, and Walter Knöchel
June 2014, Cell proliferation,
Li Yuan, and Ying Cao, and Walter Knöchel
January 2021, Frontiers in neuroscience,
Li Yuan, and Ying Cao, and Walter Knöchel
February 2019, In vitro cellular & developmental biology. Animal,
Li Yuan, and Ying Cao, and Walter Knöchel
August 2022, Life (Basel, Switzerland),
Li Yuan, and Ying Cao, and Walter Knöchel
September 2020, The Journal of clinical endocrinology and metabolism,
Li Yuan, and Ying Cao, and Walter Knöchel
May 2014, Molecular nutrition & food research,
Copied contents to your clipboard!