Neurophysiological actions of methylphenidate in the primary somatosensory cortex. 2007

Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.

As a catecholamine reuptake blocker, methylphenidate (MPH) enhances noradrenergic transmission and is likely to influence norepinephrine actions in sensory systems. To characterize neurophysiological actions of MPH in the primary somatosensory (SI) cortex, we recorded basal and whisker deflection-evoked discharge of infragranular sensory cortical neurons, before and after intraperitoneal administrations of saline and MPH (5 mg/kg) in halothane-anesthetized rats. MPH had two types of actions on sensory-evoked neuronal responses in the SI cortex, depending on the initial amplitude of the sensory response. When the whisker deflection induced a small excitatory response under control conditions, MPH significantly increased the amplitude of the response by approximately 40%. When the whisker stimulation induced a large excitatory response under control conditions, MPH did not significantly alter the amplitude of the response, but significantly decreased the duration and the peak latency of the response, so that the response was more focused. These neurophysiological actions of MPH may underlie some of the beneficial effects of the drug on sensory processing and attention.

UI MeSH Term Description Entries
D008297 Male Males
D008774 Methylphenidate A central nervous system stimulant used most commonly in the treatment of ATTENTION DEFICIT DISORDER in children and for NARCOLEPSY. Its mechanisms appear to be similar to those of DEXTROAMPHETAMINE. The d-isomer of this drug is referred to as DEXMETHYLPHENIDATE HYDROCHLORIDE. Centedrin,Concerta,Daytrana,Equasym,Metadate,Methylin,Methylphenidate Hydrochloride,Phenidylate,Ritalin,Ritalin-SR,Ritaline,Tsentedrin,Hydrochloride, Methylphenidate,Ritalin SR
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014738 Vibrissae Stiff hairs projecting from the face around the nose of most mammals, acting as touch receptors. Whiskers,Whisker

Related Publications

Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
March 2021, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
October 2023, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
January 1991, Peptides,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
January 2017, Cerebral cortex (New York, N.Y. : 1991),
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
April 2012, Pain,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
June 1980, Journal of neurophysiology,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
April 1991, The Journal of comparative neurology,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
June 2012, Brain research,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
September 1987, The Journal of comparative neurology,
Candice Drouin, and Dorothy Wang, and Barry D Waterhouse
October 2011, The European journal of neuroscience,
Copied contents to your clipboard!