Quail Sulf1 function requires asparagine-linked glycosylation. 2007

Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.

The heparan sulfate endosulfatases Sulf1 and Sulf2 are cell-surface enzymes that control growth factor signaling through regulation of the 6-O-sulfation states of cell-surface and matrix heparan sulfate proteoglycans. Here, we report that quail Sulf1 (QSulf1) is an asparagine-linked glycosylated protein. Domain mapping studies in combination with a protein glycosylation prediction program identified multiple asparagine-linked glycosylation sites in the enzymatic and C-terminal domains. Glycosylation inhibitor studies revealed that glycosylation of QSulf1 is essential for its enzymatic activity, membrane targeting, and secretion. Furthermore, N-glycanase cleavage of asparagine-linked sites in native QSulf1 provided direct evidence that these N-linked glycosylation sites are specifically required for QSulf1 heparin binding and its 6-O-desulfation activity, revealing that N-linked glycosylation has a key role in the control of sulfatase enzymatic function.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011784 Quail Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae. Quails
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
December 1995, Bioorganic & medicinal chemistry,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
June 2005, Glycobiology,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
October 1996, Chemistry & biology,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
April 1994, Proceedings of the National Academy of Sciences of the United States of America,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
May 2011, Biochemistry,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
January 1999, Biochimica et biophysica acta,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
April 2013, Journal of cellular biochemistry,
Rashmi K Ambasta, and Xingbin Ai, and Charles P Emerson
March 1992, Virology,
Copied contents to your clipboard!