Turnover at nicotinamide adenine dinucleotide in cultures of human cells. 1976

M Rechsteiner, and D Hillyard, and B M Olivera

The rate of turnover of nicotinamide adenine dinucleotide (NAD) in the human cell line, D98/AH2, has been estimated by measuring the rates of entry into and exit from NAD molecules of 14C-adenine. In one set of experiments, cells were labeled by growth in medium containing 14C-adenine for six hours and then shifted to medium without labeled adenine. The loss of 14C-adenine from the adenine nucleotide and pyridine nucleotide pools was measured, and the data were analyzed using an analytical treatment which corrects for the relatively slow turnover of precursor pools. The loss of 14C-adenine from the NAD pool and from the precursor ATP pool could be related to the absolute rate of NAD breakdown. Under the experimental conditions used, the rate of NAD turnover ranged from 83,000 to 126,000 molecules per second per cell. In a complementary experiment cells were grown in the presence of unlabeled adenine, then shifted into medium containing 14C-adenine and the rate of entry of 14C-adenine into adenine and pyridine nucleotides was measured. The data were treated using a similar analysis to relate the rate of entry of 14C-adenine into NAD and the precursor ATP pools to the absolute turnover rate of NAD. This analysis gave a value for NAD turnover of 78,000 molecules per second per cell in excellent agreement with results from the pulse-chase experiments. The results from both types of experiment indicate that within D98/AH2 cells the half-life of an intact NAD molecule is 60 +/- 18 minutes. Thus, in a human D98/AH2 cell growing with a generation time of 24 hours, NAD is turning over at twice the rate found in Escherichia coli with a generation time of half an hour.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

M Rechsteiner, and D Hillyard, and B M Olivera
December 1974, Journal of cellular physiology,
M Rechsteiner, and D Hillyard, and B M Olivera
November 1962, Plant physiology,
M Rechsteiner, and D Hillyard, and B M Olivera
November 1993, Archives of biochemistry and biophysics,
M Rechsteiner, and D Hillyard, and B M Olivera
August 1963, The Journal of biological chemistry,
M Rechsteiner, and D Hillyard, and B M Olivera
August 1965, Biochimica et biophysica acta,
M Rechsteiner, and D Hillyard, and B M Olivera
February 1968, The Journal of biological chemistry,
M Rechsteiner, and D Hillyard, and B M Olivera
October 1964, The Journal of biological chemistry,
M Rechsteiner, and D Hillyard, and B M Olivera
May 1964, The Journal of biological chemistry,
Copied contents to your clipboard!