[Neuron-glia interactions]. 1991

M F Belin, and H Hardin
INSERM CJF 90-10-CNRS 1195, Laboratoire Anatomie Pathologique, HĂ´pital Neurologique, Lyon.

The progress of research in the Central Nervous System (CNS) had led to the consideration of neurons and glia as indissociable functional complexes. Neuron-glia interactions are essential for the maturation of the CNS. Glial cells release trophic factors for neurons (NGF) and neurons release trophic factors for glia (GGF). Furthermore, the latter provide a substrate for the migration of neurons and guidance of axons by mean of adhesion molecules. In adults, the interactions between neurons and glial cells serve to maintain homeostasis. Thus, the glial cells perform the restoration of the metabolic equilibrium overthrown by the transmission of the nerve impulse and provide the glucose required for neuronal activity. The nerve impulse provokes increases in the cellular space of CO2, K+, NH3 and neurotransmitters which must be taken up to allow neuronal activity to continue (in normal conditions). Astrocytes perform the uptake of the extracellular K+ by means of passive ionic channels, ionic voltage-dependent channels and a sodium-potassium-ATPase-dependent pump. The oligodendrocytes are involved in the metabolism of CO2 by converting CO2 into carbonic acid by means of carbonic anhydrase. Oligodendrocytes and astrocytes play a role in terminating neural transmission by the uptake of the amino acid neurotransmitters, such as GABA, glutamate and aspartate. The catabolism of glutamate to glutamine by means of glutamine synthetase allows both the conversion of an excitatory amino acid into a neutral amino acid (which can diffuse in the extracellular space without causing neural transmission) and the reduction of cerebral NH3 content.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002493 Central Nervous System Diseases Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord. CNS Disease,Central Nervous System Disease,Central Nervous System Disorder,CNS Diseases,Central Nervous System Disorders
D004805 Ependyma A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD. Ependymas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

M F Belin, and H Hardin
February 1979, Neurosciences Research Program bulletin,
M F Belin, and H Hardin
January 2022, Advances in experimental medicine and biology,
M F Belin, and H Hardin
September 2020, Cells,
M F Belin, and H Hardin
July 2017, Nature reviews. Neuroscience,
M F Belin, and H Hardin
October 2010, Nature reviews. Neuroscience,
M F Belin, and H Hardin
February 2006, Neuron glia biology,
M F Belin, and H Hardin
July 2019, Annual review of neuroscience,
M F Belin, and H Hardin
February 2006, Neuron glia biology,
M F Belin, and H Hardin
October 2009, Journal of biological physics,
M F Belin, and H Hardin
September 2010, Nature reviews. Neuroscience,
Copied contents to your clipboard!