Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. 2007

Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
Department of Anatomy and Cell Biology, Ernst Moritz Arndt University, D-17487 Greifswald, Germany.

Force generated in contractile actin filament bundles (stress fibers-SFs) is transmitted to the extracellular matrix (ECM) via linker proteins and transmembrane integrins at focal adhesions (FAs). Though it has long been known that actin is rapidly exchanged in FAs, the connection between SFs and FAs has not been studied in detail. We introduced fiduciary marks on SFs by expressing GFP-palladin or GFP-alpha-actinin-1, which are both FA and dense body proteins, and by pattern bleaching of GFP-actin. Following fiduciary marks on SFs over time by time-lapse fluorescence microscopy, we detected assembly of SFs at FAs in stationary cells resulting in movement of SFs away from FAs with a velocity of 0.2-0.4 microm/min. Visualization of FAs in GFP-palladin/DsRed-paxillin double transfected cells showed that SF elongation was not accompanied by a change in FA length. SF elongation at FAs depended on actin polymerization and force as demonstrated by inhibitors of actin polymerization (cytochalasin D, jasplakinolide) and inhibitors of myosin-dependent contraction (blebbistatin, Y-27632), respectively. Our finding of SF assembly at FAs has important implications for SF formation, force transmission, and tension distribution within the actin cytoskeletal network of stationary cells.

UI MeSH Term Description Entries
D010750 Phosphoproteins Phosphoprotein
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003572 Cytochalasins 11- to 14-membered macrocyclic lactones with a fused isoindolone. Members with INDOLES attached at the C10 position are called chaetoglobosins. They are produced by various fungi. Some members interact with ACTIN and inhibit CYTOKINESIS.
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D047630 Depsipeptides Compounds consisting of chains of AMINO ACIDS alternating with CARBOXYLIC ACIDS via ester and amide linkages. They are commonly cyclized. Cyclic Depsipeptide,Cyclodepsipeptide,Depsipeptide,Peptolide,Peptolides,Cryptophycins,Cyclodepsipeptides,Depsipeptides, Cyclic,Cyclic Depsipeptides,Depsipeptide, Cyclic
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent

Related Publications

Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
April 2016, Experimental cell research,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
October 1999, Journal of cell science,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
January 2008, Vascular health and risk management,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
April 2016, Journal of cell science,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
December 2003, Journal of cell science,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
March 2008, American journal of physiology. Renal physiology,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
September 1998, Molecular biology of the cell,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
January 2014, PloS one,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
June 1996, The Journal of cell biology,
Nicole Endlich, and Carol A Otey, and Wilhelm Kriz, and Karlhans Endlich
February 1997, Science (New York, N.Y.),
Copied contents to your clipboard!