| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D000071557 |
beta-Arrestins |
Non-visual system arrestins that negatively regulate G-PROTEIN-COUPLED RECEPTORS (GPCRs) and may also function independently of GPCR signaling. They bind and recruit many different signaling factors, including MITOGEN-ACTIVATED PROTEIN KINASES; SRC-FAMILY-KINASES; and FILAMIN to GPCRs and may recognize different phosphorylation states of the receptors to determine the specificity of the cellular response to signaling. |
beta-Arrestin,beta Arrestin,beta Arrestins |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D043562 |
Receptors, G-Protein-Coupled |
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. |
G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled |
|
| D019390 |
Arrestins |
Regulatory proteins that down-regulate phosphorylated G-protein membrane receptors, including rod and cone photoreceptors and adrenergic receptors. |
|
|
| D020962 |
Heterotrimeric GTP-Binding Proteins |
GTP-BINDING PROTEINS that contain three non-identical subunits. They are found associated with members of the seven transmembrane domain superfamily of G-PROTEIN-COUPLED RECEPTORS. Upon activation the GTP-BINDING PROTEIN ALPHA SUBUNIT of the complex dissociates leaving a dimer of a GTP-BINDING PROTEIN BETA SUBUNIT bound to a GTP-BINDING PROTEIN GAMMA SUBUNIT. |
Heterotrimeric G Protein,Heterotrimeric G-Protein,Heterotrimeric G-Proteins,Heterotrimeric GTP-Binding Protein,G Protein, Heterotrimeric,G-Protein, Heterotrimeric,G-Proteins, Heterotrimeric,GTP-Binding Protein, Heterotrimeric,GTP-Binding Proteins, Heterotrimeric,Heterotrimeric G Proteins,Heterotrimeric GTP Binding Protein,Heterotrimeric GTP Binding Proteins,Protein, Heterotrimeric G,Protein, Heterotrimeric GTP-Binding |
|