Direct 99mTc labeling of monoclonal antibodies: radiolabeling and in vitro stability. 1991

J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
CIS bio international Compagnie ORIS Industrie, Department of Biomedical Imaging Applications, Gif-sur-Yvette, France.

Direct labeling involves 99mTc binding to different donor groups on the protein, giving multiple binding sites of various affinities resulting in an in vivo instability. The stability has been considerably improved by activating the antibody using a controlled reduction reaction (using 2-aminoethanethiol). This reaction generates sulfhydryl groups, which are known to strongly bind 99mTc. The direct 99mTc antibody labeling method was explored using whole antibodies and fragments. Analytical methods were developed for routine evaluation of radiolabeling yield and in vitro stability. Stable direct antibody labeling with 99mTc requires the generation of sulfhydryl groups, which show high affinity binding sites for 99mTc. Such groups are obtained with 2-aminoethanethiol (AET), which induces the reduction of the intrachain or interchain disulfide bond, with no structural deterioration or any loss of immunobiological activity of the antibody. The development of fast, reliable analytical methods has made possible the qualitative and quantitative assessment of technetium species generated by the radiolabeling process. Labeling stability is determined by competition of the 99mTc-antibody bond with three ligands, Chelex 100 (a metal chelate-type resin), free DTPA solution and 1% HSA solution. Very good 99mTc-antibody stability is obtained with activated IgG (IgGa) and Fab' fragment, which makes these substances possible candidates for immunoscintigraphy use.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D012117 Resins, Synthetic Polymers of high molecular weight which at some stage are capable of being molded and then harden to form useful components. Dental Resins,Dental Resin,Resin, Dental,Resin, Synthetic,Resins, Dental,Synthetic Resin,Synthetic Resins
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs

Related Publications

J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
May 1992, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
April 1995, Nuclear medicine and biology,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
December 1994, Journal of nuclear biology and medicine (Turin, Italy : 1991),
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
March 2001, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
May 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
January 1986, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
July 1986, Hybridoma,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
January 2000, Methods in molecular medicine,
J Y Garron, and M Moinereau, and R Pasqualini, and J C Saccavini
August 1992, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology,
Copied contents to your clipboard!