Photoinactivation of neurones axonally filled with the fluorescent dye 5(6)-carboxyfluorescein in the pond snail, Lymnaea stagnalis. 1991

G Kemenes, and K Daykin, and C J Elliott
Department of Biology, University of York, Heslington, U.K.

We describe a new, simple and reliable technique to fill molluscan neurones from their cut axons with sufficient fluorescent dye for photoinactivation experiments. The fluorescent dye 5(6)-carboxyfluorescein (5-CF) travels quickly up the nerves of the gastropod mollusc, Lymnaea stagnalis into the buccal ganglia and fills the cell bodies in 1-3 h. 5-CF filled neurones can be located in the intact ganglia with low intensity blue light. Impalement shows that they are alive and show normal resting, action and synaptic potentials. Intense laser light (wavelength 442 nm, intensity 0.5 MW.m-2) kills all the 5-CF filled cells in less than 5 min in laboratory reared snails. Unstained neurones are not killed. 5-CF fills neurones quicker than Lucifer yellow (LY) when the dye is applied axonally. Neurones stained with Lucifer yellow do not contain sufficient dye to be killed with 5 min laser illumination, but this irradiation reduces the membrane resistance to less than 25%.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008195 Lymnaea A genus of dextrally coiled freshwater snails that includes some species of importance as intermediate hosts of parasitic flukes. Lymnea,Lymnaeas,Lymneas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein

Related Publications

G Kemenes, and K Daykin, and C J Elliott
July 1990, Brain research,
G Kemenes, and K Daykin, and C J Elliott
January 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Kemenes, and K Daykin, and C J Elliott
December 2020, EvoDevo,
G Kemenes, and K Daykin, and C J Elliott
April 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
G Kemenes, and K Daykin, and C J Elliott
May 1991, The Journal of comparative neurology,
G Kemenes, and K Daykin, and C J Elliott
September 1987, Behavioral and neural biology,
G Kemenes, and K Daykin, and C J Elliott
August 1976, Cell and tissue research,
G Kemenes, and K Daykin, and C J Elliott
January 1992, Progress in brain research,
G Kemenes, and K Daykin, and C J Elliott
September 1989, Behavioral and neural biology,
G Kemenes, and K Daykin, and C J Elliott
January 1985, Peptides,
Copied contents to your clipboard!