The Rhizobium meliloti exoZl exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. 1991

A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
Lehrstuhl für Genetik, Universität Bielefeld, Germany.

A 2.6 kb ClaI-BamHI DNA fragment of megaplasmid 2 of Rhizobium meliloti 2011 was found to carry genes involved in exopolysaccharide synthesis and infection of alfalfa nodules. The analysis of the nucleotide sequence of this DNA fragment revealed the existence of two open reading frames (ORFs) running in opposite directions. Plasmid integration mutagenesis showed that these ORFs are organized as two monocistronic transcription units. One of the ORFs represents a new exo gene designated exoZ, which is involved in, but not essential for, the production of acidic exopolysaccharide. However, exoZ is not necessary for nodule formation with alfalfa. The ExoZ protein was found to show homology (23.3%) to the NodX protein of the R. leguminosarum biovar viciae strain TOM, known to be essential for nodulating the primitive Afghanistan pea. The second identified ORF corresponds to the exoB locus. The deduced amino acid sequence of the ExoB protein is homologous (39.6%) to that of the Escherichia coli GalE protein. In R. meliloti, exoB codes for a UDP-glucose 4-epimerase. A deficiency in the activity of this enzyme fully accounts for all the multiple carbohydrate defects that have been observed in exoB mutants.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
June 1988, Molecular & general genetics : MGG,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
December 1990, The Journal of biological chemistry,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
August 1990, Molecular & general genetics : MGG,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
September 1991, Molecular & general genetics : MGG,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
January 1992, FEMS microbiology letters,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
June 1994, Gene,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
May 1995, FEMS microbiology letters,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
October 1990, Molecular microbiology,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
August 1989, Plant molecular biology,
A M Buendia, and B Enenkel, and R Köplin, and K Niehaus, and W Arnold, and A Pühler
April 2012, Acta biochimica et biophysica Sinica,
Copied contents to your clipboard!