Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis. 2007

Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA.

Hypercholesterolemia is a major causative factor for atherosclerotic cardiovascular disease. The molecular mechanisms by which cholesterol initiates and facilitates the process of atherosclerosis are not well understood. Here, we demonstrate that cholesterol treatment suppresses or attenuates TGF-beta responsiveness in all cell types studied as determined by measuring TGF-beta-induced Smad2 phosphorylation and nuclear translocation, TGF-beta-induced PAI-1 expression, TGF-beta-induced luciferase reporter gene expression and TGF-beta-induced growth inhibition. Cholesterol, alone or complexed in lipoproteins (LDL, VLDL), suppresses TGF-beta responsiveness by increasing lipid raft and/or caveolae accumulation of TGF-beta receptors and facilitating rapid degradation of TGF-beta and thus suppressing TGF-beta-induced signaling. Conversely, cholesterol-lowering agents (fluvastatin and lovastatin) and cholesterol-depleting agents (beta-cyclodextrin and nystatin) enhance TGF-beta responsiveness by increasing non-lipid raft microdomain accumulation of TGF-beta receptors and facilitating TGF-beta-induced signaling. Furthermore, the effects of cholesterol on the cultured cells are also found in the aortic endothelium of ApoE-null mice fed a high-cholesterol diet. These results suggest that high cholesterol contributes to atherogenesis, at least in part, by suppressing TGF-beta responsiveness in vascular cells.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008907 Mink Carnivores of genera Mustela and Neovison of the family MUSTELIDAE. The European mink has white upper and lower lips while the American mink lacks white upper lip. American Mink,European Mink,Mustela lutreola,Mustela macrodon,Mustela vison,Neovison vison,Sea Mink,Mink, American,Mink, European,Mink, Sea,Minks,Minks, Sea,Sea Minks,vison, Neovison
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas

Related Publications

Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
April 2008, Journal of cellular physiology,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
November 1990, The Journal of biological chemistry,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
November 1995, Biological reviews of the Cambridge Philosophical Society,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
September 1995, The Journal of laboratory and clinical medicine,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
January 1986, Przeglad lekarski,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
October 1998, International journal of cancer,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
May 1998, Scandinavian journal of immunology,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
June 1990, The Journal of investigative dermatology,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
September 2006, Gene,
Chun-Lin Chen, and I-Hua Liu, and Steven J Fliesler, and Xianlin Han, and Shuan Shian Huang, and Jung San Huang
October 2005, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!