Variability of monocular visual acuity during binocular viewing. 1991

D F Sucher

Two patients observed changes in the visual acuity of one eye when both eyes were viewing simultaneously in certain directions of gaze. While viewing targets presented during the Turville Infinity Balance (TIB) test, the acuity of the affected or amblyopic eye improved when the nonamblyopic eye was covered and binocular vision suspended. The vision of the amblyopic eye was also improved when an appropriate prism was held in front of either eye. The direction of the prism base was based upon the interrelations of horizontal, vertical, and cyclotorsional anisophoria and the amount of prism was the minimum necessary to improve the vision in the amblyopic eye and neutralize vertical fixation disparity. The correlation of variable monocular acuity, stereopsis, and fixation disparity with oculomotor balance is recorded and discussed.

UI MeSH Term Description Entries
D012030 Refractive Errors Deviations from the average or standard indices of refraction of the eye through its dioptric or refractive apparatus. Ametropia,Refractive Disorders,Ametropias,Disorder, Refractive,Disorders, Refractive,Error, Refractive,Errors, Refractive,Refractive Disorder,Refractive Error
D005139 Eyeglasses A pair of ophthalmic lenses in a frame or mounting which is supported by the nose and ears. The purpose is to aid or improve vision. It does not include goggles or nonprescription sun glasses for which EYE PROTECTIVE DEVICES is available. Glasses,Spectacles,Sun Glasses, Prescription,Glasses, Prescription Sun,Prescription Sun Glasses
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000550 Amblyopia A nonspecific term referring to impaired vision. Major subcategories include stimulus deprivation-induced amblyopia and toxic amblyopia. Stimulus deprivation-induced amblyopia is a developmental disorder of the visual cortex. A discrepancy between visual information received by the visual cortex from each eye results in abnormal cortical development. STRABISMUS and REFRACTIVE ERRORS may cause this condition. Toxic amblyopia is a disorder of the OPTIC NERVE which is associated with ALCOHOLISM, tobacco SMOKING, and other toxins and as an adverse effect of the use of some medications. Anisometropic Amblyopia,Lazy Eye,Amblyopia, Developmental,Amblyopia, Stimulus Deprivation-Induced,Amblyopia, Suppression,Stimulus Deprivation-Induced Amblyopia,Amblyopia, Anisometropic,Amblyopia, Stimulus Deprivation Induced,Amblyopias,Amblyopias, Anisometropic,Amblyopias, Developmental,Amblyopias, Stimulus Deprivation-Induced,Amblyopias, Suppression,Anisometropic Amblyopias,Deprivation-Induced Amblyopia, Stimulus,Deprivation-Induced Amblyopias, Stimulus,Developmental Amblyopia,Developmental Amblyopias,Eye, Lazy,Eyes, Lazy,Lazy Eyes,Stimulus Deprivation Induced Amblyopia,Stimulus Deprivation-Induced Amblyopias,Suppression Amblyopia,Suppression Amblyopias
D014787 Vision Tests A series of tests used to assess various functions of the eyes. Test, Vision,Tests, Vision,Vision Test
D014792 Visual Acuity Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. Acuities, Visual,Acuity, Visual,Visual Acuities
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision
D015357 Vision Disparity The difference between two images on the retina when looking at a visual stimulus. This occurs since the two retinas do not have the same view of the stimulus because of the location of our eyes. Thus the left eye does not get exactly the same view as the right eye. Binocular Disparity,Fixation Disparity,Ocular Disparity,Parallax, Ocular,Retinal Disparity,Visual Disparity,Binocular Disparities,Disparities, Binocular,Disparities, Fixation,Disparities, Ocular,Disparities, Retinal,Disparities, Vision,Disparities, Visual,Disparity, Binocular,Disparity, Fixation,Disparity, Ocular,Disparity, Retinal,Disparity, Vision,Disparity, Visual,Fixation Disparities,Ocular Disparities,Ocular Parallax,Retinal Disparities,Vision Disparities,Visual Disparities

Related Publications

D F Sucher
October 1965, Nature,
D F Sucher
April 1968, Vital and health statistics. Series 11, Data from the National Health Survey,
D F Sucher
January 1982, Vision research,
D F Sucher
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
D F Sucher
August 1966, Archives of ophthalmology (Chicago, Ill. : 1960),
D F Sucher
August 2013, Experimental brain research,
D F Sucher
October 1949, Journal of experimental psychology,
D F Sucher
February 2008, Optometry and vision science : official publication of the American Academy of Optometry,
Copied contents to your clipboard!