Phospholipid profiles in the salivary glands of rats of different ages. 2007

Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
Department of Biochemistry, Tokyo Dental College, Mihama-ku, Chiba, Japan. yumitomita@tbp.t-com.ne.jp

It has been reported that diabetes and Sjögren's syndrome patients exhibit variations in the amount of salivation and in the lipid components in saliva and salivary glands. We examined whether lipid compositions, especially phospholipid ones in the salivary glands of rats varied with aging. We analyzed phospholipid and fatty acid compositions in the salivary glands of young (5 to 6 weeks), adult (20 weeks), and old (50 weeks) rats and biochemical components in their blood. The aging (adult and old) rats had higher triacylglycerol, total lipid, total cholesterol and glucose contents in the plasma than the young one. The aging ones also had higher total lipid contents in the major salivary glands (parotid, submandibular and sublingual glands). They had higher wet weights of the major salivary glands and epididymal fat pads than the young ones, but had lower ratios of the major salivary glands to body weight. All of them had high phospholipid contents in the parotid and submandibular glands as compared to sublingual gland, but the aging ones had lower percentage of phospholipid contents of all salivary glands. Phosphatidylcholine and phosphatidylethanolamine were predominant among the phospholipids in the major salivary glands, and little difference was observed in phospholipid composition among the three groups. Palmitic and stearic acids (saturated acids), and linoleic, oleic and arachidonic acids (unsaturated acids) were major components of fatty acids of phospholipids in the major salivary glands. The aging ones had higher linoleic and lower arachidonic acid contents in the glands than the young one. In summary, the aging rats had higher total lipid contents than the young ones and had lower phospholipid contents of the major salivary glands. The n-6 fatty acid contents differed between aging and young ones. The results suggest that phospholipids in the major salivary glands change with the development of rat.

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012469 Salivary Glands Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND). Gland, Salivary,Glands, Salivary,Salivary Gland
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
October 1976, Acta physiologica Scandinavica,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 1984, Experimental gerontology,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
December 2010, Biomedical research (Tokyo, Japan),
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 1975, Voprosy biokhimii mozga,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
March 2021, Archives of insect biochemistry and physiology,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
May 1999, Archives of oral biology,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 1989, Egyptian dental journal,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 2011, Advances in clinical chemistry,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 1960, Journal of dental research,
Yumiko Tomita, and Nahoko Miyake, and Sumie Yamanaka
January 2018, Wiadomosci lekarskie (Warsaw, Poland : 1960),
Copied contents to your clipboard!