Possible differences between the time courses of presynaptic and postsynaptic GABAB mediated inhibition in the human motor cortex. 2008

Jason Chu, and Carolyn Gunraj, and Robert Chen
Division of Neurology, Department of Medicine, Toronto Western Research Institute and Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, ON, Canada.

Paired-pulse transcranial magnetic stimulation (TMS) can be used to non-invasively evaluate human motor cortical inhibitory circuits such as short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). Pharmacological studies suggested that SICI is mediated by GABA(A) receptors while LICI is probably mediated by GABA(B) receptors. A previous study also showed that SICI and LICI are mediated by separate neuronal populations and that LICI inhibits SICI, possibly through presynaptic GABA(B) receptors. The aim of this study was to examine whether the time course of motor-evoked potentials (MEP) inhibition by LICI, likely mediated through postsynaptic GABA(B) receptors, is different from SICI inhibition by LICI, likely mediated through presynaptic GABA(B) receptors. Nine healthy volunteers were studied and MEP were recorded from the first dorsal interosseous muscle. A triple-stimulus TMS paradigm was used to evaluate the effect of LICI at ISIs of 100 and 150 ms on SICI. LICI at 100 and 150 ms caused a similar degree of MEP inhibition. LICI at 100 ms led to a significant reduction of SICI but LICI at 150 ms had no effect on SICI. Repeated measures ANOVA revealed a significant interaction between the LICI mediated inhibition of SICI and ISI (P = 0.0072). These findings suggest that the time courses of presynaptic and postsynaptic GABA(B) receptors mediated inhibition are different in the human motor cortex.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D017729 Presynaptic Terminals The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included. Axon Terminals,Nerve Endings, Presynaptic,Synaptic Boutons,Synaptic Terminals,Axon Terminal,Bouton, Synaptic,Boutons, Synaptic,Ending, Presynaptic Nerve,Endings, Presynaptic Nerve,Nerve Ending, Presynaptic,Presynaptic Nerve Ending,Presynaptic Nerve Endings,Presynaptic Terminal,Synaptic Bouton,Synaptic Terminal,Terminal, Axon,Terminal, Presynaptic,Terminal, Synaptic,Terminals, Axon,Terminals, Presynaptic,Terminals, Synaptic

Related Publications

Jason Chu, and Carolyn Gunraj, and Robert Chen
July 1993, Journal of neurophysiology,
Jason Chu, and Carolyn Gunraj, and Robert Chen
November 1994, Journal of neurophysiology,
Jason Chu, and Carolyn Gunraj, and Robert Chen
December 1998, The European journal of neuroscience,
Jason Chu, and Carolyn Gunraj, and Robert Chen
February 1970, Bollettino della Societa italiana di biologia sperimentale,
Jason Chu, and Carolyn Gunraj, and Robert Chen
September 1976, The Journal of physiology,
Jason Chu, and Carolyn Gunraj, and Robert Chen
May 2006, Neuroscience letters,
Jason Chu, and Carolyn Gunraj, and Robert Chen
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!