[Optimization of attachment conditions for rabbit mesenchymal stem cells in cytodex 3 microcarrier culture systems]. 2007

Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.

Mesenchymal stem cells are of great value in tissue engineering and genetic engineering. To study the in vitro dynamic expansion of mesenchymal stem cells by microcarrier technology, we began the research with the investigation of attachment of rabbit mesenchymal stem cells on cytodex 3 microcarriers after inoculation. The result showed a poor attachment efficiency of 16.7% +/- 1.1% under general conditions, so the attachment efficiency must be increased through the optimization of inoculation conditions. Intermittent stirring, inoculation in 50% of the final culture volume and reduction of the fetal bovine serum concentration at inoculation all led to notable increases in attachment efficiency. Ratio of rMSCs attached in aMEM cultures was 39.8% higher than that of DMEM's on the average. When all these optimal conditions were adopted, the attachment efficiency (65.5%) was significantly higher than that (26.6%) under general conditions; accordingly the final growth extents of rMSCs were 4. 50 and 2. 01, respectively. Therefore, the optimization of attachment conditions promoted the expansion of rMSCs on microcarriers.

UI MeSH Term Description Entries
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells
D018929 Cell Culture Techniques Methods for maintaining or growing CELLS in vitro. Cell Culture,Cell Culture Technique,Cell Cultures,Culture Technique, Cell,Culture Techniques, Cell

Related Publications

Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
October 2012, Cell proliferation,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
January 2016, Methods in molecular biology (Clifton, N.J.),
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
January 2015, Methods in molecular biology (Clifton, N.J.),
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
March 2018, Biochemical engineering journal,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
June 2023, Materials today. Bio,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
April 2013, BioResearch open access,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
May 2011, Journal of materials science. Materials in medicine,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
March 2016, Biotechnology journal,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
January 1990, Bioprocess technology,
Dandan Jiang, and Jingbo Hu, and Yan Zhou, and Wensong Tan
April 2000, Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology,
Copied contents to your clipboard!