Identification of a new functional splice variant of the enzyme methionine sulphoxide reductase A (MSRA) expressed in rat vascular smooth muscle cells. 2007

Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
Department of Physiology, Richards D100, 3700 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.

Reactive oxygen species contribute to ageing of the vascular system and development of cardiovascular disease. Methionine-S-sulphoxide, an oxidized form of methionine, is repaired by the enzyme methionine sulphoxide reductase A (MSRA). The enzyme, targeted to mitochondria or the cytosol by alternative splicing, is vital for oxidative stress resistance. This study was designed to examine the endogenous expression and intracellular localization of MSRA in rat aortic vascular smooth muscle cells (VSMCs). We detected robust MSRA immunoreactivity exclusively in mitochondria. Sequence analysis of msrA transcripts revealed the presence of a novel mitochondrial splice variant, msrA2a, in cultured rat VSMCs as well as in aortic tissue preparations. The enzymatic activity of a recombinant MSRA2a protein was confirmed by the reduction of methionine sulphoxide in a model substrate peptide. We conclude that multiple MSRA variants participate in the repair of oxidized proteins in VSMC mitochondria, but that other protective mechanisms may exist in the cytoplasmic compartment.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
July 2003, The Biochemical journal,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
January 2013, British journal of biomedical science,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
January 2012, PloS one,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
November 2020, International journal of molecular sciences,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
November 2017, The Journal of general and applied microbiology,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
March 2022, Scientific reports,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
May 2004, Journal of pharmacological sciences,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
February 2017, Preparative biochemistry & biotechnology,
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
May 2020, Antioxidants (Basel, Switzerland),
Ronny Haenold, and Ramez Wassef, and Alfred Hansel, and Stefan H Heinemann, and Toshinori Hoshi
January 2021, Protein and peptide letters,
Copied contents to your clipboard!