Relaxation from rigor by photolysis of caged-ATP in different types of muscle fibres from Xenopus laevis. 1991

G J Stienen, and M A Ferenczi
Laboratory for Physiology, Free University, Amsterdam, The Netherlands.

Using chemically skinned fast and slow fibres from the iliofibularis muscle of Xenopus laevis, we measured the force changes following laser pulse photolysis of caged-ATP at 4 degrees C in the presence and absence of added calcium. The time course of the early force change in the absence of calcium was used to derive an apparent second order rate constant for crossbridge detachment. These values were compared with previous model-dependent estimates stemming from force-velocity experiments. For fast muscle fibres, the value obtained here was equal to that obtained in the previous study, namely 4 x 10(5) M-1 S-1. For slow fibres, the value obtained from caged-ATP experiments was 1.5 x 10(4) M-1 S-1, whereas the value from force-velocity experiments was 20 times greater (2.9 x 10(5) M-1 S-1). The different values for slow fibres indicate that the model assumptions inherent in the analysis of the force-velocity experiments may not hold for all muscle types. For example, the process of dissociation of the actomyosin complex of slow myosins may be different from that of fast myosins. All observed or calculated kinetic transitions for the crossbridge cycle were slower in slow muscle fibres than in fast muscle fibres. These include the forward and backward rate constants for crossbridge attachment which were lower by a factor of three in slow fibres compared with fast fibres.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D005260 Female Females
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

G J Stienen, and M A Ferenczi
December 1982, Nature,
G J Stienen, and M A Ferenczi
March 1992, The Journal of physiology,
G J Stienen, and M A Ferenczi
February 1995, Proceedings of the National Academy of Sciences of the United States of America,
G J Stienen, and M A Ferenczi
January 1988, Advances in experimental medicine and biology,
G J Stienen, and M A Ferenczi
September 1984, Proceedings of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!