Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. 2007

Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.

Lymphoid tissue plasmacytoid and conventional dendritic cells (DCs) are continuously regenerated from hematopoietic stem cells. The cytokine dependence and biology of plasmacytoid and conventional DCs suggest that regeneration might proceed through common DC-restricted developmental intermediates. By selecting for cytokine receptor expression relevant to DC development, we identify here highly cycling Lin(-)c-Kit(int)Flt3(+)M-CSFR(+) cells with a distinct gene-expression profile in mouse bone marrow that, on a clonal level in vitro and as a population both in vitro and in vivo, efficiently generated plasmacytoid and conventional DCs but no other lineages, which increased in number after in vivo injection of the cytokine Flt3 ligand. These clonogenic common DC progenitors thus define a cytokine-regulated DC developmental pathway that ensures the supply of various DC populations.

UI MeSH Term Description Entries
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
November 1997, Cell,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
January 2015, PloS one,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
January 2020, Biochemical and biophysical research communications,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
July 2003, The Journal of experimental medicine,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
November 2013, The Journal of experimental medicine,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
October 2005, Journal of immunology (Baltimore, Md. : 1950),
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
August 2004, Journal of immunology (Baltimore, Md. : 1950),
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
January 2008, Blood,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
July 2017, Mucosal immunology,
Nobuyuki Onai, and Aya Obata-Onai, and Michael A Schmid, and Toshiaki Ohteki, and David Jarrossay, and Markus G Manz
September 2011, Blood,
Copied contents to your clipboard!