Sleep/wake firing patterns of human genioglossus motor units. 2007

E Fiona Bailey, and Keith W Fridel, and Amber D Rice
Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA. ebailey@u.arizona.edu

Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

UI MeSH Term Description Entries
D008297 Male Males
D008334 Mandible The largest and strongest bone of the FACE constituting the lower jaw. It supports the lower teeth. Mylohyoid Groove,Mylohyoid Ridge,Groove, Mylohyoid,Grooves, Mylohyoid,Mandibles,Mylohyoid Grooves,Mylohyoid Ridges,Ridge, Mylohyoid,Ridges, Mylohyoid
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010609 Pharyngeal Muscles The muscles of the PHARYNX are voluntary muscles arranged in two layers. The external circular layer consists of three constrictors (superior, middle, and inferior). The internal longitudinal layer consists of the palatopharyngeus, the salpingopharyngeus, and the stylopharyngeus. During swallowing, the outer layer constricts the pharyngeal wall and the inner layer elevates pharynx and LARYNX. Palatopharyngeus,Muscles of Pharynx,Palatopharyngeal Muscle,Salpingopharyngeus,Stylopharyngeus,Velopharyngeal Muscle,Muscle, Palatopharyngeal,Muscle, Pharyngeal,Muscle, Velopharyngeal,Muscles, Pharyngeal,Pharyngeal Muscle,Pharynx Muscle,Pharynx Muscles
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

E Fiona Bailey, and Keith W Fridel, and Amber D Rice
January 2007, Journal of neurophysiology,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
April 2008, Sleep,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
March 2010, Sleep,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
January 2002, Advances in experimental medicine and biology,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
October 2011, Respiratory physiology & neurobiology,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
January 1985, Nature,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
May 1998, Neuroscience letters,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
May 1985, Journal of neurophysiology,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
January 2022, Advances in neurobiology,
E Fiona Bailey, and Keith W Fridel, and Amber D Rice
June 1968, The Journal of physiology,
Copied contents to your clipboard!