Antibodies in the serum of golden hamsters experimentally infected with the intestinal trematode Echinostoma caproni. 1991

P E Simonsen, and B B Estambale, and M Agger
Danish Bilharziasis Laboratory, Charlottenlund, Denmark.

The serum antibody response in golden hamsters (Mesocricetus auratus) infected with the intestinal trematode Echinostoma caproni was examined with ELISA, SDS-PAGE and Western blot, and IFAT techniques. All methods showed that the hamsters responded slowly but developed a clear positive humoral response to the infection. In most hamsters, an antibody response to infection could not be detected earlier than 11-13 weeks after infection with 6 or 25 metacercariae, and responses were weak when compared to previous results from mice infected with the same parasite. IFAT with positive hamster sera on live juvenile E. caproni showed only fluorescence at the posterior tip, which is a different pattern from that seen using from infected mice, indicating a different response to antigens on the juvenile parasites by these two hosts. The results are discussed in relation to the limited selfcure and development of resistance which is observed in golden hamsters infected with E. caproni.

UI MeSH Term Description Entries
D007411 Intestinal Diseases, Parasitic Infections of the INTESTINES with PARASITES, commonly involving PARASITIC WORMS. Infections with roundworms (NEMATODE INFECTIONS) and tapeworms (CESTODE INFECTIONS) are also known as HELMINTHIASIS. Parasitic Intestinal Diseases,Disease, Parasitic Intestinal,Diseases, Parasitic Intestinal,Intestinal Disease, Parasitic,Parasitic Intestinal Disease
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004449 Echinostoma A genus of intestinal flukes of the family Echinostomatidae which consists of many species. They occur in man and other vertebrates. The intermediate hosts are frequently mollusks. Echinostoma ilocanum,Euparyphium ilocanum,Fascioletta ilocanum,Echinostoma ilocanums,Echinostomas,Euparyphium ilocanums,Fascioletta ilocanums,ilocanum, Echinostoma,ilocanum, Fascioletta,ilocanums, Euparyphium
D004451 Echinostomiasis Infection by flukes of the genus Echinostoma. Echinostomiases
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

P E Simonsen, and B B Estambale, and M Agger
December 1991, Journal of helminthology,
P E Simonsen, and B B Estambale, and M Agger
January 1996, Advances in parasitology,
P E Simonsen, and B B Estambale, and M Agger
February 2012, Parasitology research,
P E Simonsen, and B B Estambale, and M Agger
August 2007, The Journal of parasitology,
P E Simonsen, and B B Estambale, and M Agger
August 1989, International journal for parasitology,
P E Simonsen, and B B Estambale, and M Agger
September 1993, Journal of helminthology,
Copied contents to your clipboard!