Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase. 1976

M J Barber, and R C Bray, and D J Lowe, and M P Coughlan

Studies by e.p.r. (electron-paramagnetic-resonance) spectroscopy and by stopped-flow spectrophotometry on turkey liver xanthine dehydrogenase revealed strong similarities to as well as important differences from the Veillonella alcalescens xanthine dehydrogenase and milk xanthine oxidase. The turkey enzyme is contaminated by up to three non-functional forms, giving molybdenum e.p.r. signals designated Resting I, Resting II and Slow. Slow and to a lesser extent Resting I signals are like those from the Veillonella enzyme, whereas Resting II is very like a resting signal described by K. V. Rajagopolan, P. Handler, G. Palmer & H. Beinert (1968) (J. Biol. Chem. 243, 3784-3796) for aldehyde oxidase. Another non-functional form that gives the Inhibited signal is produced on treatment of the enzyme with formaldehyde. Stopped-flow measurements at 450 nm show that, as for the milk enzyme, reduction by xanthine is rate-limiting in enzyme turnover. The active enzyme gives rise to Very Rapid and Rapid molybdenum(V) e.p.r. signals, as well as to an FADH signal. That these signals are almost indistinguishable from those of the milk enzyme, confirms the similarities between the active sites. There are two types of iron-sulphur centres that give signals like those in the milk enzyme, though with slightly different parameters. Quantitative reduction titration of the functional enzyme with xanthine revealed two important differences between the turkey and the milk enzymes. First, the turkey enzyme FADH/FADH2 system has a redox potential sufficiently low that xanthine is incapable of reducing the flavin completely. This finding presumably explains the very low oxidase activity. Secondly, whereas the Fe/S II chromophore in the milk enzyme has a relatively high redox potential, for the turkey enzyme the value of this potential is lower and similar to that of its Fe/S I chromophore.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.

Related Publications

M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
February 1976, The Biochemical journal,
M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
April 1978, The Biochemical journal,
M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
September 1969, Biochimica et biophysica acta,
M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
May 1968, The Journal of biological chemistry,
M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
May 1969, The Journal of biological chemistry,
M J Barber, and R C Bray, and D J Lowe, and M P Coughlan
July 1965, The Journal of biological chemistry,
Copied contents to your clipboard!