Cooperativity and noncooperativity in the binding of NAD analogues to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. 1976

D Eby, and M E Kirtly

Using NAD analogues as ligands, the structural requirements for negative cooperativity in binding to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase were examined. Although the affinity of nicotinamide hypoxanthine dinucleotide is considerably lower than that of NAD+, it also binds to the enzyme with negative cooperatively. Two pairs of nicotinamide hypoxanthine dinucleotide binding sitess were distinguished, one pair having an affinity for the analogue which is 15 times that of the second pair. Negative cooperativity is also found in the Km values for the analogue. Thus modification of the adenine ring of NAD+ to hypoxanthine does not abolish negative cooperativity in coenzyme binding. Adenosine diphosphoribose binding to the same enzyme shows neither positive nor negative cooperativity, indicating that cooperativity apparently requires an intact nicotinamide ring in the coenzyme structure, under the conditions of these experiments. Occupancy of the nicotinamide subsite of the coenzyme binding site is not necessary for half-of-sites reactivity of alkylating or acylating compounds (Levitzki, A. (1974), J. Mol, Biol. 90, 451-458). However, it can be important in the negative cooperativity in ligand binding, as illustrated by adenosine diphosphoribose which fails to exhibit negative cooperativity. Occupancy of the adenine subsite by adenine is important for stabilization of the enzyme against thermal denaturation. Whether the stabilization is due to an altered conformation of the subunits or stabilization of the preexisting structure of the apoenzyme cannot be determined from these studies. However, nicotinamide hypoxanthine dinucleotide does not contribute to enzyme stability although it serves as a substrate and shows negative cooperativity.

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

D Eby, and M E Kirtly
January 1981, Annals of the New York Academy of Sciences,
D Eby, and M E Kirtly
December 1983, European journal of biochemistry,
D Eby, and M E Kirtly
January 1982, Methods in enzymology,
D Eby, and M E Kirtly
December 2003, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!