Absorption kinetics and action profiles of subcutaneously administered insulin analogues (AspB9GluB27, AspB10, AspB28) in healthy subjects. 1991

S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
Department of Medicine, University of Wales College of Medicine, Cardiff, United Kingdom.

OBJECTIVE The subcutaneous absorption and resulting changes in plasma insulin or analogue, glucose, C-peptide, and blood intermediary metabolite concentrations after subcutaneous bolus injection of three soluble human insulin analogues (AspB9GluB27, monomeric; AspB28, mixture of monomers and dimers; and AspB10, dimeric) and soluble human insulin were evaluated. METHODS Fasting healthy male volunteers (n = 7) were studied on five occasions 1 wk apart randomly receiving 0.6 nmol.kg-1 s.c. 125I-labeled AspB10 or soluble human insulin (Novolin R, Novo, Copenhagen); 1st study and 0.6 nmol.kg-1 s.c. 125I-labeled AspB28, AspB9GluB27 or soluble human insulin (2nd study). Residual radioactivity at the injection site was measured over 8 h with frequent venous sampling for plasma immunoreactive insulin or analogue, glucose, C-peptide, and blood intermediary metabolite concentrations. RESULTS The three analogues were absorbed 2-3 times faster than human insulin. The mean +/- SE time to 50% residual radioactivity was 94 +/- 6 min for AspB10 compared with 184 +/- 10 min for human insulin (P less than 0.001), 83 +/- 8 min for AspB28 (P less than 0.005), and 63 +/- 9 min for AspB9GluB27 (P less than 0.001) compared with 182 +/- 21 min for human insulin. delta Peak plasma insulin analogue levels were significantly higher after each analogue than after human insulin (P less than 0.005). With all three analogues, the mean hypoglycemic nadir occurred earlier at 61-65 min postinjection compared with 201-210 min for the reference human insulins (P less than 0.005). The magnitude of the hypoglycemic nadir was greater after AspB9GluB27 (P less than 0.05) and AspB28 (P less than 0.001) compared with human insulin. There was a significantly faster onset and offset of responses in C-peptide and intermediary metabolite levels after the analogues than after human insulin (P less than 0.05). CONCLUSIONS The rapid absorption and biological actions of these analogues offer potential therapeutic advantages over the current short-acting neutral soluble insulins.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide

Related Publications

S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
November 1989, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
December 2015, Current therapeutic research, clinical and experimental,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
October 2013, Clinical pharmacology in drug development,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
January 1982, Diabetes care,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
January 1993, Problemy endokrinologii,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
April 1985, Diabete & metabolisme,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
January 2018, Journal of diabetes research,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
September 1993, Biomedizinische Technik. Biomedical engineering,
S Kang, and J Brange, and A Burch, and A Vølund, and D R Owens
June 1990, Diabetologia,
Copied contents to your clipboard!