Biochemical characterization of the enterotoxigenic Escherichia coli LeoA protein. 2007

Eric A Brown, and Philip R Hardwidge
Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.

Enterotoxigenic Escherichia coli (ETEC) causes enterotoxin-induced diarrhoea and significant mortality. The molecular mechanisms underlying how the heat-labile enterotoxin (LT) is secreted during infection are poorly understood. ETEC produce outer-membrane vesicles (OMVs) containing LT that are endocytosed into host cells. Although OMV production and protein content may be a regulated component of ETEC pathogenesis, how LT loading into OMVs is regulated is unknown. The LeoA protein plays a role in secreting LT from the bacterial periplasm. To begin to understand the function of LeoA and its role in ETEC H10407 pathogenesis, a site-directed mutant lacking the putative GTP-binding domain was constructed. The ability of wild-type and mutant LeoA to hydrolyse GTP in vitro was quantified. This domain was found to be responsible for GTP binding; it is important to LeoA's function in LT secretion, and may play a modest role in the formation and protein content of OMVs. Deletion of leoA reduced the abundance of OmpX in outer-membrane protein preparations and of LT in OMVs. Immunoprecipitation experiments revealed that LeoA interacts directly with OmpA, but that the GTP-binding domain is non-essential for this interaction. Deletion of leoA rendered ETEC H10407 non-motile, through apparent periplasmic accumulation of FliC.

UI MeSH Term Description Entries
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions

Related Publications

Eric A Brown, and Philip R Hardwidge
July 1976, Canadian journal of comparative medicine : Revue canadienne de medecine comparee,
Eric A Brown, and Philip R Hardwidge
August 1980, The Journal of infectious diseases,
Eric A Brown, and Philip R Hardwidge
May 1978, Nihon rinsho. Japanese journal of clinical medicine,
Eric A Brown, and Philip R Hardwidge
March 2019, Current infectious disease reports,
Eric A Brown, and Philip R Hardwidge
October 2016, EcoSal Plus,
Eric A Brown, and Philip R Hardwidge
March 2008, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Eric A Brown, and Philip R Hardwidge
June 1996, Infection and immunity,
Eric A Brown, and Philip R Hardwidge
February 2013, Journal of clinical microbiology,
Copied contents to your clipboard!