Noncommutative control in the rotational vestibuloocular reflex. 2008

Tamara Tchelidze, and Bernhard J M Hess
Department of Neurology, University Hospital Zurich, Zurich, Switzerland.

To investigate the role of noncommutative computations in the oculomotor system, three-dimensional (3D) eye movements were measured in seven healthy subjects using a memory-contingent vestibulooculomotor paradigm. Subjects had to fixate a luminous point target that appeared briefly at an eccentricity of 20 degrees in one of four diagonal directions in otherwise complete darkness. After a fixation period of approximately 1 s, the subject was moved through a sequence of two rotations about mutually orthogonal axes in one of two orders (30 degrees yaw followed by 30 degrees pitch and vice versa in upright and 30 degrees yaw followed by 20 degrees roll and vice versa in both upright and supine orientations). We found that the change in ocular torsion induced by consecutive rotations about the yaw and the pitch axis depended on the order of rotations as predicted by 3D rotation kinematics. Similarly, after rotations about the yaw and roll axis, torsion depended on the order of rotations but now due to the change in final head orientation relative to gravity. Quantitative analyses of these ocular responses revealed that the rotational vestibuloocular reflexes (VORs) in far vision closely matched the predictions of 3D rotation kinematics. We conclude that the brain uses an optimal VOR strategy with the restriction of a reduced torsional position gain. This restriction implies a limited oculomotor range in torsion and systematic tilts of the angular eye velocity as a function of gaze direction.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D005260 Female Females

Related Publications

Tamara Tchelidze, and Bernhard J M Hess
July 2007, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
November 1994, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
November 1994, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
November 1994, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
September 1976, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
November 1998, Journal of neurophysiology,
Tamara Tchelidze, and Bernhard J M Hess
August 1981, Annals of neurology,
Tamara Tchelidze, and Bernhard J M Hess
December 1961, Neurology,
Tamara Tchelidze, and Bernhard J M Hess
January 1988, Annals of neurology,
Tamara Tchelidze, and Bernhard J M Hess
January 1991, Acta oto-laryngologica. Supplementum,
Copied contents to your clipboard!