Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. 2007

Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), PO Box 611, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland.

Micro-filtration is a standard process for sterilization in scientific research, medical, and industrial applications, and to remove particles in drinking water or wastewater treatment. It is generally assumed, and confirmed by quantifying filtration efficiency by plating, that filters with a 0.1-0.45 microm pore size can retain bacteria. In contrast to this assumption, we have regularly observed the passage of a significant fraction of natural freshwater bacterial communities through 0.45, 0.22, and 0.1 microm pore size filters. Flow cytometry and a regrowth assay were applied in the present study to quantify and cultivate filterable bacteria. Here we show for the first time a systematic quantification of their filterability, especially their ability to pass through 0.1 microm pore size filters. The filtered bacteria were subsequently able to grow on natural assimilable organic carbon (AOC) with specific growth rates up to 0.47 h(-1). We were able to enrich bacteria communities that pass preferentially through all three pore size filters at significantly increased percentages using successive filtration-regrowth cycles. In all instances, the dominant microbial populations comprised slender spirillum-shaped Hylemonella gracilis strains, suggesting shape-dependent selection during the filtration process. This quantification of the omnipresence of microfilterable bacterial in natural freshwater and their regrowth characteristics demand a change in the sterile filtration practice used in industrial and engineering applications as well as scientific research.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D014871 Water Microbiology The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms. Microbiology, Water
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
April 2010, The Journal of general and applied microbiology,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
January 1979, Vestnik dermatologii i venerologii,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
July 2018, Bioscience, biotechnology, and biochemistry,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
July 2007, Extremophiles : life under extreme conditions,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
August 1991, Applied and environmental microbiology,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
December 2017, Journal of food protection,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
February 2024, Biotechnology journal,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
October 2020, Chemosphere,
Yingying Wang, and Frederik Hammes, and Nico Boon, and Thomas Egli
January 2001, PDA journal of pharmaceutical science and technology,
Copied contents to your clipboard!