Feedback control of ribosome function in Escherichia coli. 2008

H Bremer, and P Dennis
Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA. bremer3@attglobal.net

We have previously proposed that the rate of ribosome function during balanced growth in E. coli, expressed as the rate of peptide chain elongation, is adjusted by a feedback mechanism: whenever that rate is submaximal (i.e. below 22 amino acid residues polymerized per active ribosome at 37 degrees C), the feedback signal ppGpp is generated by an activation of the ppGpp synthetase expressed from the spoT gene. The accumulation of ppGpp reduces the synthesis of additional ribosomes and thereby reduces the consumption of amino acids which, in turn, allows the remaining ribosomes to function at a higher rate. Here we have described with supporting evidence the proposed feedback loop in greater detail and provided a mathematical analysis which predicts that the SpoT ppGpp synthetase activity should be highest when the ribosomes function at their half-maximal rate. This prediction is consistent with reported observations and is independent of the particular (unknown) mechanism by which the rate of translation controls the ppGpp synthetase activity of SpoT.

UI MeSH Term Description Entries
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D011755 Pyrophosphatases A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-. Pyrophosphatase
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D025461 Feedback, Physiological A mechanism of communication with a physiological system for homeostasis, adaptation, etc. Physiological feedback is mediated through extensive feedback mechanisms that use physiological cues as feedback loop signals to control other systems. Feedback, Biochemical,Feedback Inhibition, Biochemical,Feedback Regulation, Biochemical,Feedback Stimulation, Biochemical,Negative Feedback, Biochemical,Positive Feedback, Biochemical,Biochemical Feedback,Biochemical Feedback Inhibition,Biochemical Feedback Inhibitions,Biochemical Feedback Regulation,Biochemical Feedback Regulations,Biochemical Feedback Stimulation,Biochemical Feedback Stimulations,Biochemical Feedbacks,Biochemical Negative Feedback,Biochemical Negative Feedbacks,Biochemical Positive Feedback,Biochemical Positive Feedbacks,Feedback Inhibitions, Biochemical,Feedback Regulations, Biochemical,Feedback Stimulations, Biochemical,Feedback, Biochemical Negative,Feedback, Biochemical Positive,Feedbacks, Biochemical,Feedbacks, Biochemical Negative,Feedbacks, Biochemical Positive,Feedbacks, Physiological,Inhibition, Biochemical Feedback,Inhibitions, Biochemical Feedback,Negative Feedbacks, Biochemical,Physiological Feedback,Physiological Feedbacks,Positive Feedbacks, Biochemical,Regulation, Biochemical Feedback,Regulations, Biochemical Feedback,Stimulation, Biochemical Feedback,Stimulations, Biochemical Feedback
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

H Bremer, and P Dennis
January 1958, Bulletin de la Societe de chimie biologique,
H Bremer, and P Dennis
January 1976, Progress in nucleic acid research and molecular biology,
H Bremer, and P Dennis
December 2015, Seikagaku. The Journal of Japanese Biochemical Society,
H Bremer, and P Dennis
January 2006, Journal of molecular microbiology and biotechnology,
H Bremer, and P Dennis
January 1964, The Journal of biological chemistry,
H Bremer, and P Dennis
December 2018, Journal of basic microbiology,
Copied contents to your clipboard!