Efavirenz accelerates HIV-1 reverse transcriptase ribonuclease H cleavage, leading to diminished zidovudine excision. 2008

Jessica Radzio, and Nicolas Sluis-Cremer
University of Pittsburgh School of Medicine, Division of Infectious Diseases, 817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.

Previous biochemical studies have demonstrated that synergy between non-nucleoside reverse transcriptase (RT) inhibitors (NNRTI) and nucleoside RT inhibitors (NRTIs) is due to inhibition by the NNRTI of the rate at which HIV-1 RT facilitates ATP-mediated excision of NRTIs from chain-terminated template/primers (T/P). However, these studies did not take into account the possible effects of NNRTI on the ribonuclease H (RNase H) activity of RT, despite recent evidence that suggests an important role for this activity in the NRTI excision phenotype. Accordingly, in this study, we compared the ability of efavirenz to inhibit the incorporation and excision of zidovudine (AZT) by HIV-1 RT using DNA/DNA and RNA/DNA T/Ps that were identical in sequence. Whereas IC(50) values for the inhibition of AZT-triphosphate incorporation by efavirenz were essentially similar for both DNA/DNA and RNA/DNA T/P, a 19-fold difference in IC(50) was observed between the AZT-monophosphate excision reactions, the RNA/DNA T/P substrate being significantly more sensitive to inhibition. Analysis of the RNase H cleavage events generated during ATP-mediated excision reactions demonstrated that efavirenz dramatically increased the rate of appearance of a secondary cleavage product that decreased the T/P duplex length to only 10 nucleotides. Studies designed to delineate the relationship between T/P duplex length and efficiency of AZT excision demonstrated that RT could not efficiently unblock chain-terminated T/P if the RNA/DNA duplex length was less than 12 nucleotides. Taken together, these results highlight an important role for RNase H activity in the NRTI excision phenotype and in the mechanism of synergy between NNRTI and NRTI.

UI MeSH Term Description Entries
D003521 Cyclopropanes Three-carbon cycloparaffin cyclopropane (the structural formula (CH2)3) and its derivatives.
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000480 Alkynes Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2. Acetylenic Compounds,Alkyne,Acetylenes
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D048588 Benzoxazines OXAZINES with a fused BENZENE ring. Benzoxazine,Benzoxazinoid,Benzoxazinone,Benzoxazinones,Benzoxazinoids
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D054309 Ribonuclease H, Human Immunodeficiency Virus A ribonuclease activity that is a component of the HIV REVERSE TRANSCRIPTASE. It removes the RNA strand of the RNA-DNA heteroduplex produced by reverse transcription. Once the RNA moiety is removed a double stranded DNA copy of the HIV RNA can be synthesized. RNAse H, HIV,Ribonuclease H, HIV,HIV RNAse H,HIV Ribonuclease H
D019380 Anti-HIV Agents Agents used to treat AIDS and/or stop the spread of the HIV infection. These do not include drugs used to treat symptoms or opportunistic infections associated with AIDS. AIDS Drug,AIDS Drugs,Anti-AIDS Agents,Anti-AIDS Drug,Anti-HIV Agent,Anti-HIV Drug,Anti-AIDS Drugs,Anti-HIV Drugs,Agent, Anti-HIV,Agents, Anti-AIDS,Agents, Anti-HIV,Anti AIDS Agents,Anti AIDS Drug,Anti AIDS Drugs,Anti HIV Agent,Anti HIV Agents,Anti HIV Drug,Anti HIV Drugs,Drug, AIDS,Drug, Anti-AIDS,Drug, Anti-HIV,Drugs, AIDS,Drugs, Anti-AIDS,Drugs, Anti-HIV

Related Publications

Jessica Radzio, and Nicolas Sluis-Cremer
October 2012, Biology,
Jessica Radzio, and Nicolas Sluis-Cremer
February 1990, Biochemical and biophysical research communications,
Jessica Radzio, and Nicolas Sluis-Cremer
August 2015, Proteins,
Jessica Radzio, and Nicolas Sluis-Cremer
April 1991, Science (New York, N.Y.),
Jessica Radzio, and Nicolas Sluis-Cremer
September 2021, Archiv der Pharmazie,
Jessica Radzio, and Nicolas Sluis-Cremer
January 2011, Chemical biology & drug design,
Jessica Radzio, and Nicolas Sluis-Cremer
January 2010, Biochemistry,
Jessica Radzio, and Nicolas Sluis-Cremer
December 2010, Biochemistry,
Jessica Radzio, and Nicolas Sluis-Cremer
September 1989, Archives of biochemistry and biophysics,
Copied contents to your clipboard!