Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. 2008

Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, E-03550 San Juan de Alicante, Spain.

Metabotropic glutamate receptor 1 (mGluR1) has been related to processes underlying learning in hippocampal circuits, but demonstrating its involvement in synaptic plasticity when measured directly on the relevant circuit of a learning animal has proved to be technically difficult. We have recorded the functional changes taking place at the hippocampal CA3-CA1 synapse during the acquisition of an associative task in conscious mice carrying a targeted disruption of the mGluR1 gene. Animals were classically conditioned to evoke eyelid responses, using a trace (conditioned stimulus [CS], tone; unconditioned stimulus [US], electric shock) paradigm. Acquisition of this task was impaired in mutant mGluR1(+/-) mice and abolished in mGluR1(-/-) mice. A single pulse presented to Schaffer collaterals during the CS-US interval evoked a monosynaptic field excitatory postsynaptic potential at ipsilateral CA1 pyramidal cells, whose slope was linearly related to learning evolution in controls but not in mGluR1 mutants. Long-term potentiation evoked by train stimulation of Schaffer collaterals was also impaired in both mGluR1(+/-) and mGluR1(-/-) animals. Administration of the selective mGluR1 antagonist (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydro-cyclopental [c]furan-1-on to wild-type animals mimicked the functional changes associated to mGluR1 insufficiency in mutants. Thus, mGluR1 is required for activity-dependent synaptic plasticity and associative learning in behaving mice.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001245 Association Learning The principle that items experienced together enter into a connection, so that one tends to reinstate the other. Association Learnings,Learning, Association,Learnings, Association
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate

Related Publications

Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
March 2012, Cerebral cortex (New York, N.Y. : 1991),
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
June 2009, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
February 2007, The European journal of neuroscience,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
April 2015, Glia,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
December 2012, Hippocampus,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
January 2016, PloS one,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
June 1997, Brain research,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
January 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
October 1994, Cell,
Cristina Gil-Sanz, and José M Delgado-García, and Alfonso Fairén, and Agnès Gruart
January 2002, Neuroscience,
Copied contents to your clipboard!