Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. 2008

Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.

Xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) is a non-heme mononuclear Fe(II) enzyme that decarboxylates alphaKG to succinate and CO(2) while hydroxylating xanthine to generate uric acid. In the absence of a XanA crystal structure, a homology model was used to target several putative active site residues for mutagenesis. Wild-type XanA and ten enzyme variants were purified from recombinant Escherichia coli cells and characterized. The H149A and D151A variants were inactive and the H340A variant exhibited only 0.17% of the wild-type enzyme activity, consistent with the proposed role of His149, Asp151, and His340 as Fe ligands. The K122A variant led to a 2-fold increase in the K(d) of alphaKG as measured by fluorescence quenching analysis, in agreement with Lys122 acting to stabilize the binding of alphaKG. The N358A variant exhibited a 23-fold decrease in k(cat)/K(m) compared to wild-type XanA, pointing to a key role of Asn358 in catalysis. 9-Methylxanthine was exploited as an alternate substrate, and the C357A, E137A, and D138A variants were found to exhibit relatively enhanced activity consistent with Cys357, Glu137, and Asp138 being proximal to N-9 or involved in its proper positioning. 6,8-Dihydroxypurine was identified as a slow-binding competitive inhibitor of XanA, and significant decreases (E137A and D138A) or increases (Q356A and N358A) in K(i)(app) of the variants were interpreted in terms of distinct interactions between this compound and the corresponding active site side chains. Further support for Cys357 residing at the active site was obtained using thiol-specific reagents that inactivated wild-type enzyme (with partial protection by substrate), whereas the C357A variant was resistant to these reagents. The Q101A, Q356A, and C357A variants showed elevated ferroxidase activity in the absence of substrates, pointing to the presence of the corresponding side chains at the active site. These results confirm most aspects of the homology model and provide additional insight into the enzyme reactivity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D001233 Aspergillus nidulans A species of imperfect fungi from which the antibiotic nidulin is obtained. Its teleomorph is Emericella nidulans. Aspergillus nidulellus,Emericella nidulans
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D049308 Dioxygenases Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS. Dioxygenase

Related Publications

Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
May 2007, Biochemistry,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
February 1989, Journal of general microbiology,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
November 1978, European journal of biochemistry,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
January 1984, The International journal of biochemistry,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
February 1995, The Journal of biological chemistry,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
January 2000, Journal of agricultural and food chemistry,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
March 1984, Archives of biochemistry and biophysics,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
July 2021, Protein expression and purification,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
January 2009, Protein expression and purification,
Meng Li, and Tina A Müller, and Bruce A Fraser, and Robert P Hausinger
April 1972, The Biochemical journal,
Copied contents to your clipboard!