Insulin resistance in myotonic dystrophy. 1991

M G Piccardo, and G Pacini, and M Rosa, and R Vichi
2nd Medical Clinic, University La Sapienza of Rome, Italy.

The aim of the present study was to obtain a comprehensive picture of the rate of insulin secretion and of tissue sensitivity to the endogenous hormone in myotonic dystrophy patients (MyD). The minimal model approach was utilized for the analysis of frequently sampled intravenous glucose tolerance test data (FSIGT). This method provided the characteristic parameters: SI, insulin sensitivity index; SG fractional glucose disappearance independent of dynamic insulin; n, fractional insulin clearance; phi 1 and phi 2 first and second phase insulin delivery sensitivities to glucose stimulation. In MyD patients SI was reduced (p less than 0.01) by 71% to 1.4 +/- 0.3 x 10(-4) min-1/(microU/ml), whereas in controls it was 4.85 +/- 0.77; SG was within the normal range: 0.044 +/- 0.012 min-1 in MyD patients and 0.036 +/- 0.017 min-1 in controls; phi 1 increased in MyD patients (7.4 +/- 1.3 min (microU/ml)/(mg/dl) versus 4.1 +/- 1.2 in controls); phi 2 increased in MyD patients (126 +/- 47 x 10(4) min-2/(microU/ml)/(mg/dl) versus 17 +/- 6 in controls; p less than 0.05). MyD patients showed a normal tolerance with the glucose disappearance constant, KG within the normal range: 2.75 versus 2.62% min-1 in controls. In MyD patients insulin resistance was associated with a higher than normal insulin delivery for both secretory phases, although the second phase was responsible for releasing a greater amount of hormone. In conclusion MyD patients try to compensate for overall insulin resistance by a more marked pancreatic response.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009223 Myotonic Dystrophy Neuromuscular disorder characterized by PROGRESSIVE MUSCULAR ATROPHY; MYOTONIA, and various multisystem atrophies. Mild INTELLECTUAL DISABILITY may also occur. Abnormal TRINUCLEOTIDE REPEAT EXPANSION in the 3' UNTRANSLATED REGIONS of DMPK PROTEIN gene is associated with Myotonic Dystrophy 1. DNA REPEAT EXPANSION of zinc finger protein-9 gene intron is associated with Myotonic Dystrophy 2. Dystrophia Myotonica,Myotonic Dystrophy, Congenital,Myotonic Myopathy, Proximal,Steinert Disease,Congenital Myotonic Dystrophy,Dystrophia Myotonica 1,Dystrophia Myotonica 2,Myotonia Atrophica,Myotonia Dystrophica,Myotonic Dystrophy 1,Myotonic Dystrophy 2,PROMM (Proximal Myotonic Myopathy),Proximal Myotonic Myopathy,Ricker Syndrome,Steinert Myotonic Dystrophy,Steinert's Disease,Atrophica, Myotonia,Atrophicas, Myotonia,Congenital Myotonic Dystrophies,Disease, Steinert,Disease, Steinert's,Dystrophia Myotonica 2s,Dystrophia Myotonicas,Dystrophica, Myotonia,Dystrophicas, Myotonia,Dystrophies, Congenital Myotonic,Dystrophies, Myotonic,Dystrophy, Congenital Myotonic,Dystrophy, Myotonic,Dystrophy, Steinert Myotonic,Myopathies, Proximal Myotonic,Myopathy, Proximal Myotonic,Myotonia Atrophicas,Myotonia Dystrophicas,Myotonic Dystrophies,Myotonic Dystrophies, Congenital,Myotonic Dystrophy, Steinert,Myotonic Myopathies, Proximal,Myotonica, Dystrophia,Myotonicas, Dystrophia,PROMMs (Proximal Myotonic Myopathy),Proximal Myotonic Myopathies,Steinerts Disease,Syndrome, Ricker
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

M G Piccardo, and G Pacini, and M Rosa, and R Vichi
July 2002, Nihon rinsho. Japanese journal of clinical medicine,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
February 1991, Nihon rinsho. Japanese journal of clinical medicine,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
June 1983, Neurology,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
February 1984, Annals of neurology,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
February 1993, Anales espanoles de pediatria,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
June 1986, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
October 1980, Neurology,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
December 1970, The American journal of the medical sciences,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
January 1969, The New England journal of medicine,
M G Piccardo, and G Pacini, and M Rosa, and R Vichi
January 1969, The New England journal of medicine,
Copied contents to your clipboard!