Addition of mitomycin C to cis-diamminedichloroplatinum(II)/hyperthermia/radiation therapy in the FSaIIC fibrosarcoma. 1991

T S Herman, and B A Teicher, and S A Holden
Dana-Farber Cancer Institute, Boston, MA.

Hyperthermia (temperatures greater than or equal to 42 degrees C) is used clinically to improve the effectiveness of radiation therapy and, although therapeutic gains have been reported, efficacy is limited when tumours are large and/or radiation tolerance is reduced. In order to improve the utility of the hyperthermia/radiation combination we have tested the addition of cisplatin (CDDP) in the laboratory and in the clinic. Our clinical studies have shown that the CDDP/hyperthermia/radiation combination is tolerable and effective, but laboratory investigations demonstrated a relative lack of cytotoxicity in the hypoxic tumour subpopulation. In order to improve the effectiveness of the CDDP/hyperthermia/radiation combination against hypoxic cells we have evaluated the addition of mitomycin C, a hypoxic cell cytotoxic agent to this combination. Mitomycin C (5 mg/kg) i.p. produced a tumour growth delay (TGD) of about 5.3 days in the FSaIIC murine fibrosarcoma; hyperthermia (43 degrees C x 30 min) caused only about 1.4 day TGD and the combination of mitomycin C followed immediately by hyperthermia caused a TGD of about 8.6 days. CDDP (5 mg/kg) i.p. followed by hyperthermia and then 3 Gy on day 1 only of a 5 day x 3 Gy radiation protocol produced a TGD of about 25 days. With the addition of mitomycin C just before CDDP a TGD of about 44 days resulted. Whole tumour excision experiments demonstrated that mitomycin C was highly interactive with CDDP at 37 degrees C and was dose-modifying. When used with CDDP and hyperthermia, however, mitomycin C added little additional cytotoxicity. Hoechst 33342 dye diffusion-determined tumour subpopulation studies indicated a marked effect of the addition of mitomycin C in the dim (enriched in hypoxic cells) subpopulation and nearby equal cytotoxicity in both bright (enriched in euoxic cells) and dim cells resulted. These investigations suggest considerable potential therapeutic efficacy to the addition of mitomycin C to the CDDP/hyperthermia/radiation combination.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009944 Organoplatinum Compounds Organic compounds which contain platinum as an integral part of the molecule. Compounds, Organoplatinum
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy
D012513 Sarcoma, Experimental Experimentally induced neoplasms of CONNECTIVE TISSUE in animals to provide a model for studying human SARCOMA. EHS Tumor,Sarcoma, Engelbreth-Holm-Swarm,Sarcoma, Jensen,Experimental Sarcoma,Experimental Sarcomas,Sarcomas, Experimental,Engelbreth-Holm-Swarm Sarcoma,Jensen Sarcoma,Sarcoma, Engelbreth Holm Swarm,Tumor, EHS
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D016685 Mitomycin An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis. Mitomycin C,Ametycine,Mitocin-C,Mitomycin-C,Mutamycin,NSC-26980,Mitocin C,MitocinC,NSC 26980,NSC26980

Related Publications

T S Herman, and B A Teicher, and S A Holden
March 1996, International journal of cancer,
T S Herman, and B A Teicher, and S A Holden
May 1986, Gan to kagaku ryoho. Cancer & chemotherapy,
T S Herman, and B A Teicher, and S A Holden
January 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
T S Herman, and B A Teicher, and S A Holden
January 1990, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
T S Herman, and B A Teicher, and S A Holden
January 1984, Cancer investigation,
Copied contents to your clipboard!