Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. 2008

Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.

Vibrio harveyi luciferase and flavin reductase FRP are, together, a two-component monooxygenase couple. The reduced flavin mononucleotide (FMNH2) generated by FRP must be supplied, through either free diffusion or direct transfer, to luciferase as a substrate. In contrast, single-component bifunctional monooxygenases each contains a bound flavin cofactor and does not require any flavin addition to facilitate catalysis. In this study, we generated and characterized a novel fusion enzyme, FRP-alphabeta, in which FRP was fused to the luciferase alpha subunit. Both FRP and luciferase within FRP-alphabeta were catalytically active. Kinetic properties characteristic of a direct transfer of FMNH2 cofactor from FRP to luciferase in a FRP:luciferase noncovalent complex were retained by FRP-alphabeta. At submicromolar levels, FRP-alphabeta was significantly more active than an equal molar mixture of FRP and luciferase in coupled bioluminescence without FMN addition. Importantly, FRP-alphabeta gave a higher total quantum output without than with exogenously added FMN. Moreover, effects of increasing concentrations of oxygen on light intensity were investigated using sub-micromolar enzymes, and results indicated that the bioluminescence produced by FRP-alphabeta without added flavin was derived from direct transfer of reduced flavin whereas bioluminescence from a mixture of FRP and luciferase with or without exogenously added flavin relied on free-diffusing reduced flavin. Therefore, the overall catalytic reaction of FRP-alphabeta without any FMN addition closely mimics that of a single-component bifunctional monooxygenase. This fusion enzyme approach could be useful to other two-component monooxygenases in enhancing the enzyme efficiencies under conditions hindering reduced flavin delivery. Other potential utilities of this approach are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014733 Vibrio A genus of VIBRIONACEAE, made up of short, slightly curved, motile, gram-negative rods. Various species produce cholera and other gastrointestinal disorders as well as abortion in sheep and cattle. Beneckea

Related Publications

Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
October 2006, Archives of biochemistry and biophysics,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
April 2008, Archives of biochemistry and biophysics,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
March 2009, The Journal of biological chemistry,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
April 2003, Photochemistry and photobiology,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
October 1998, Biochemistry,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
December 2001, Archives of biochemistry and biophysics,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
November 2017, Chembiochem : a European journal of chemical biology,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
January 1985, The Journal of biological chemistry,
Navneet Jawanda, and Kamran Ahmed, and Shiao-Chun Tu
August 2003, Applied and environmental microbiology,
Copied contents to your clipboard!