N-terminal sequence analysis of N alpha-acetylated proteins after unblocking with N-acylaminoacyl-peptide hydrolase. 1991

R G Krishna, and C C Chin, and F Wold
Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225.

The enzyme acylaminoacyl-peptide hydrolase represents an attractive reagent for the removal of acetylamino acids from the N-terminus of proteins prior to sequencing. However, the enzyme will not accept intact proteins as substrates, and a blocked protein must consequently be fragmented to generate a relative short blocked peptide, and all the newly generated amino termini must be blocked with an hydrolase-resistant reagent before the enzyme can be used to specifically unblock the N-terminus. When a number of N-acetylated proteins (enolase, alpha-crystallin, ovalbumin, cytochrome c, parvalbumin, superoxide dismutase, and myelin basic protein) were subjected to fragmentation with proteases or cyanogen bromide, treatment with succinic anhydride and exhaustive extraction with ether, and the resulting salt-free, succinylated peptides were incubated with the hydrolase, the N-terminal sequence was specifically unblocked. An aliquot of the entire peptide mixture was applied to the protein sequencer, and a single sequence, corresponding to the known N-terminal sequence starting at residue 2, was obtained. When another aliquot of the same hydrolase-treated peptide mixture was treated with the enzyme acylase I, the liberated acetylamino acid was cleaved, and the N-terminal amino acid (residue 1) could be identified by amino acid analysis. The amount of sequence information obtained from different proteins with different fragmentation methods varied considerably; in the case of parvalbumin a sequence of 12 residues was obtained, while for myelin basic protein, only 3 residues could be identified; the other proteins yielded from 5- to 9-residue sequences.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R G Krishna, and C C Chin, and F Wold
May 1992, Protein science : a publication of the Protein Society,
R G Krishna, and C C Chin, and F Wold
July 1989, The Journal of biological chemistry,
R G Krishna, and C C Chin, and F Wold
August 2009, Current protocols in protein science,
R G Krishna, and C C Chin, and F Wold
May 2001, Current protocols in protein science,
R G Krishna, and C C Chin, and F Wold
November 1975, Journal of theoretical biology,
R G Krishna, and C C Chin, and F Wold
June 1987, Indian journal of biochemistry & biophysics,
R G Krishna, and C C Chin, and F Wold
January 2013, Methods in molecular biology (Clifton, N.J.),
R G Krishna, and C C Chin, and F Wold
January 1994, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!