Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. 2008

Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
Graduate School of Human and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.

The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D044169 Receptors, Calcium-Sensing A class of G-protein-coupled receptors that react to varying extracellular CALCIUM levels. Calcium-sensing receptors in the PARATHYROID GLANDS play an important role in the maintenance of calcium HOMEOSTASIS by regulating the release of PARATHYROID HORMONE. They differ from INTRACELLULAR CALCIUM-SENSING PROTEINS which sense intracellular calcium levels. Calcium-Sensing Receptor,CASR Protein,Ca-Sensing Receptors,Ca2+-Sensing Receptor,Calcium Receptors,Calcium-Sensing Receptor Protein,Calcium-Sensing Receptors,Extracellular Calcium-Ion Sensing Receptor,Parathyroid Calcium-Sensing Receptor,Receptor, Ca-Sensing,Receptors, Calcium,Ca Sensing Receptors,Ca-Sensing Receptor,Ca2+ Sensing Receptor,Calcium Sensing Receptor,Calcium Sensing Receptor Protein,Calcium Sensing Receptors,Calcium-Sensing Receptor, Parathyroid,Extracellular Calcium Ion Sensing Receptor,Parathyroid Calcium Sensing Receptor,Receptor Protein, Calcium-Sensing,Receptor, Ca Sensing,Receptor, Ca2+-Sensing,Receptor, Calcium-Sensing,Receptor, Parathyroid Calcium-Sensing,Receptors, Ca-Sensing,Receptors, Calcium Sensing
D054046 Plant Stomata Closable openings in the epidermis of plants on the underside of leaves. They allow the exchange of gases between the internal tissues of the plant and the outside atmosphere. Stomata, Plant,Plant Stomatas,Stomatas, Plant
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium
D030821 Plants, Genetically Modified PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING. Genetically Modified Plants,Plants, Transgenic,Transgenic Plants,GMO Plants,Genetically Engineered Plants,Engineered Plant, Genetically,Engineered Plants, Genetically,GMO Plant,Genetically Engineered Plant,Genetically Modified Plant,Modified Plant, Genetically,Modified Plants, Genetically,Plant, GMO,Plant, Genetically Engineered,Plant, Genetically Modified,Plant, Transgenic,Plants, GMO,Plants, Genetically Engineered,Transgenic Plant

Related Publications

Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
June 2000, Anesthesiology,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
November 2001, Neuroreport,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
February 1995, Biochimica et biophysica acta,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
December 1994, Proceedings of the National Academy of Sciences of the United States of America,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
March 1994, The Journal of experimental medicine,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
July 1988, Neuron,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
August 2014, Functional plant biology : FPB,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
March 1995, The Biochemical journal,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
December 1998, The Journal of biological chemistry,
Hironari Nomura, and Teiko Komori, and Maki Kobori, and Yoichi Nakahira, and Takashi Shiina
May 1992, Brain research,
Copied contents to your clipboard!