Holmium laser for benign prostatic hyperplasia. 2008

Narihito Seki, and Seiji Naito
Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. narihito@uro.med.kyushu-u.ac.jp

OBJECTIVE The following review provides an overview of the current status, while focusing on the surgical techniques associated with the holmium laser for the treatment of benign prostatic hyperplasia. RESULTS A systematic Medline database search, with a focus on articles about surgical treatment with holmium laser for benign prostatic hyperplasia, provided some new data concerning holmium laser enucleation of the prostate. On the other hand, new interesting data concerning both resection and ablation techniques using the holmium laser have only been sparsely reported during this review period. CONCLUSIONS Holmium laser enucleation of the prostate is a safe procedure for treating not only patients without co-morbidities but also patients with urinary retention or who are on anticoagulants. Holmium laser enucleation of the prostate can be performed on prostates of all sizes with significantly less morbidity. Although holmium laser enucleation of the prostate represents a state-of-the-art procedure, a prolonged learning curve has still prevented the widespread adoption of this device in the urological community.

UI MeSH Term Description Entries
D008297 Male Males
D011468 Prostatectomy Complete or partial surgical removal of the prostate. Three primary approaches are commonly employed: suprapubic - removal through an incision above the pubis and through the urinary bladder; retropubic - as for suprapubic but without entering the urinary bladder; and transurethral (TRANSURETHRAL RESECTION OF PROSTATE). Prostatectomy, Retropubic,Prostatectomy, Suprapubic,Prostatectomies,Prostatectomies, Retropubic,Prostatectomies, Suprapubic,Retropubic Prostatectomies,Retropubic Prostatectomy,Suprapubic Prostatectomies,Suprapubic Prostatectomy
D011470 Prostatic Hyperplasia Increase in constituent cells in the PROSTATE, leading to enlargement of the organ (hypertrophy) and adverse impact on the lower urinary tract function. This can be caused by increased rate of cell proliferation, reduced rate of cell death, or both. Adenoma, Prostatic,Benign Prostatic Hyperplasia,Prostatic Adenoma,Prostatic Hyperplasia, Benign,Prostatic Hypertrophy,Prostatic Hypertrophy, Benign,Adenomas, Prostatic,Benign Prostatic Hyperplasias,Benign Prostatic Hypertrophy,Hyperplasia, Benign Prostatic,Hyperplasia, Prostatic,Hyperplasias, Benign Prostatic,Hypertrophies, Prostatic,Hypertrophy, Benign Prostatic,Hypertrophy, Prostatic,Prostatic Adenomas,Prostatic Hyperplasias, Benign,Prostatic Hypertrophies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D053844 Lasers, Solid-State Lasers which use a solid, as opposed to a liquid or gas, as the lasing medium. Common materials used are crystals, such as YAG (YTTRIUM aluminum garnet); alexandrite; and CORUNDUM, doped with a rare earth element such as a NEODYMIUM; ERBIUM; or HOLMIUM. The output is sometimes additionally modified by addition of non-linear optical materials such as potassium titanyl phosphate crystal, which for example is used with neodymium YAG lasers to convert the output light to the visible range. Alexandrite Laser,Alexandrite Lasers,Diode Pumped Solid State Laser,Diode Pumped Solid State Lasers,Er-YAG Laser,Er-YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Laser,Erbium YAG Laser,Erbium-Doped Yttrium Aluminum Garnet Laser,Erbium-Doped Yttrium Aluminum Garnet Lasers,Ho YAG Laser,Ho YAG Lasers,Holmium Doped Yttrium Aluminum Garnet Lasers,Holmium Laser,Holmium-YAG Laser,Holmium-YAG Lasers,KTP Laser,Laser, Nd-YAG,Nd-YAG Laser,Nd-YAG Lasers,Neodymium-Doped Yttrium Aluminum Garnet Laser,Neodymium-Doped Yttrium Aluminum Garnet Lasers,Potassium Titanyl Phosphate Laser,Ruby Laser,Ruby Lasers,Solid-State Laser,YAG Laser,YAG Lasers,YLF Laser,YLF Lasers,YSGG Laser,YSGG Lasers,Yttrium Aluminum Garnet Laser,Yttrium-Lithium-Fluoride Laser,Yttrium-Lithium-Fluoride Lasers,Yttrium-Scandium-Gallium Garnet Laser,Yttrium-Scandium-Gallium Garnet Lasers,Erbium YAG Lasers,Holmium Lasers,KTP Lasers,Lasers, Alexandrite,Lasers, Diode Pumped Solid State,Lasers, Er-YAG,Lasers, Erbium-Doped Yttrium Aluminum Garnet,Lasers, Ho-YAG,Lasers, Holmium Doped Yttrium Aluminum Garnet,Lasers, Nd-YAG,Lasers, Neodymium-Doped Yttrium Aluminum Garnet,Lasers, Ruby,Lasers, YAG,Lasers, Yttrium Aluminum Garnet,Lasers, Yttrium-Lithium-Fluoride,Potassium Titanyl Phosphate Lasers,Yttrium Aluminum Garnet Lasers,Er YAG Laser,Er YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Lasers,Ho-YAG Laser,Ho-YAG Lasers,Holmium YAG Laser,Holmium YAG Lasers,Laser, Alexandrite,Laser, Er-YAG,Laser, Erbium YAG,Laser, Ho YAG,Laser, Ho-YAG,Laser, Holmium,Laser, Holmium-YAG,Laser, KTP,Laser, Nd YAG,Laser, Ruby,Laser, Solid-State,Laser, YAG,Laser, YLF,Laser, YSGG,Laser, Yttrium-Lithium-Fluoride,Laser, Yttrium-Scandium-Gallium Garnet,Lasers, Er YAG,Lasers, Erbium Doped Yttrium Aluminum Garnet,Lasers, Erbium YAG,Lasers, Ho YAG,Lasers, Holmium,Lasers, Holmium-YAG,Lasers, KTP,Lasers, Nd YAG,Lasers, Neodymium Doped Yttrium Aluminum Garnet,Lasers, Solid State,Lasers, YLF,Lasers, YSGG,Lasers, Yttrium Lithium Fluoride,Lasers, Yttrium-Scandium-Gallium Garnet,Nd YAG Laser,Nd YAG Lasers,Neodymium Doped Yttrium Aluminum Garnet Laser,Neodymium Doped Yttrium Aluminum Garnet Lasers,Solid State Laser,Solid-State Lasers,YAG Laser, Erbium,YAG Laser, Ho,YAG Lasers, Erbium,YAG Lasers, Ho,Yttrium Lithium Fluoride Laser,Yttrium Lithium Fluoride Lasers,Yttrium Scandium Gallium Garnet Laser,Yttrium Scandium Gallium Garnet Lasers

Related Publications

Narihito Seki, and Seiji Naito
January 1999, Urologiia (Moscow, Russia : 1999),
Narihito Seki, and Seiji Naito
August 2016, The Canadian journal of urology,
Narihito Seki, and Seiji Naito
January 2007, Current opinion in urology,
Narihito Seki, and Seiji Naito
May 2004, The Journal of urology,
Narihito Seki, and Seiji Naito
February 2012, The Canadian journal of urology,
Narihito Seki, and Seiji Naito
March 2018, Urologiia (Moscow, Russia : 1999),
Narihito Seki, and Seiji Naito
August 2000, Journal of endourology,
Narihito Seki, and Seiji Naito
January 2013, The Journal of urology,
Copied contents to your clipboard!