Methane as fuel for anaerobic microorganisms. 2008

Rudolf K Thauer, and Seigo Shima
Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany. thauer@mpi-marburg.mpg.de

Methane has long been known to be used as a carbon and energy source by some aerobic alpha- and delta-proteobacteria. In these organisms the metabolism of methane starts with its oxidation with O(2) to methanol, a reaction catalyzed by a monooxygenase and therefore restricted to the aerobic world. Methane has recently been shown to also fuel the growth of anaerobic microorganisms. The oxidation of methane with sulfate and with nitrate have been reported, but the mechanisms of anaerobic methane oxidation still remains elusive. Sulfate-dependent methane oxidation is catalyzed by methanotrophic archaea, which are related to the Methanosarcinales and which grow in close association with sulfate-reducing delta-proteobacteria. There is evidence that anaerobic methane oxidation with sulfate proceeds at least in part via reversed methanogenesis involving the nickel enzyme methyl-coenzyme M reductase for methane activation, which under standard conditions is an endergonic reaction, and thus inherently slow. Methane oxidation coupled to denitrification is mediated by bacteria belonging to a novel phylum and does not involve methyl-coenzyme M reductase. The first step in methane oxidation is most likely the exergonic formation of 2-methylsuccinate from fumarate and methane catalyzed by a glycine-radical enzyme.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011407 Propane A three carbon alkane with the formula H3CCH2CH3.
D004980 Ethane A two carbon alkane with the formula H3C-CH3.
D006862 Hydrogen Sulfide A flammable, poisonous gas with a characteristic odor of rotten eggs. It is used in the manufacture of chemicals, in metallurgy, and as an analytical reagent. (From Merck Index, 11th ed) Hydrogen Sulfide (H2(Sx)),Hydrogen Sulfide (H2S2),Hydrogen Sulfide (H2S3),Sulfide, Hydrogen
D000473 Alkanes The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkane
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

Rudolf K Thauer, and Seigo Shima
September 2010, Angewandte Chemie (International ed. in English),
Rudolf K Thauer, and Seigo Shima
October 2009, Environmental microbiology reports,
Rudolf K Thauer, and Seigo Shima
September 1999, Nature,
Rudolf K Thauer, and Seigo Shima
February 2019, Journal of hazardous materials,
Rudolf K Thauer, and Seigo Shima
March 2006, Environmental science & technology,
Rudolf K Thauer, and Seigo Shima
June 2018, Applied microbiology and biotechnology,
Rudolf K Thauer, and Seigo Shima
September 2008, Environmental science & technology,
Rudolf K Thauer, and Seigo Shima
December 1981, Microbiological reviews,
Rudolf K Thauer, and Seigo Shima
January 1969, Mikrobiologiia,
Copied contents to your clipboard!